Web mining and Social Network AnalysisDino Pedreschipedre@di.unipi.it

Lecture 2 – Graphs and networks

Diapositiva 1

DP1 Dino Pedreschi; 15/04/2011

"**Natural" Networks and Universality**

- $\mathcal{L}_{\mathcal{A}}$ Consider many kinds of networks:
	- ▔ social, technological, business, economic, content,…
- **These networks tend to share certain** *informal* **properties:**
	- ▔ large scale; continual growth
	- ▔ distributed, organic growth: vertices "decide" who to link to
	- interaction restricted to links
	- ▔ **n** mixture of local and long-distance connections
	- abstract notions of distance: geographical, content, social,…
- $\mathcal{L}(\mathcal{A})$ Do natural networks share more *quantitative* universals?
- F What would these "universals" be?
- How can we make them precise and measure them? $\overline{\mathbb{R}^n}$
- $\mathcal{L}_{\mathcal{A}}$ How can we explain their universality?
- This is the domain of *social network theory* F
- Sometimes also referred to as *link analysis* \mathcal{L}^{max}

Graphs as common language

Choosing the proper representation

- •The choice of the proper network representation determines our ability to use network theory successfully.
	- In some cases there is a unique, unambiguous
"servescentation representation.
	- •In other cases, the representation is by no means unique.

•For example, for a group of individuals, the way you assign the links will determine the nature of the question you can study.

CHOOSING A PROPER REPRESENTATION

The structure of adolescent romantic and sexual networks

If you connect those that have a sexual relationship, you will be exploring the *sexual networks.*

Bearman PS, Moody J; Institute for Social and Economic Research and http://researchnews.osu.edu/arcl inspix.htm

If you connect individuals based on their first name (*all Peters connected to each other*), you will be exploring what?

It is a network, nevertheless.

GRAPHOLOGY *¹*

Actor network, protein-protein interactions WWW, citation networks

Analisi di reti sociali - Aprile 2011

 $0 \t 1 \t 0 \t 0$

2

⁴

 $\left($

 \int

 $\overline{\mathcal{L}}$

3

1

 \setminus

i, *j*=1

N

 $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

 $0 \t 0 \t 1 \t 1$

¹ ⁰ ⁰ ⁰

 $0 \t 0 \t 0 \t 0$

 $A_{ii} = 0$ $A_{ij} \neq A_{ji}$

 $\sum_{i,j=1}^{N} A_{ij}$ < k > = $\frac{L}{N}$

GRAPHOLOGY *²*

protein-protein interactions, www Call Graph, metabolic networks

Complete Graph

(undirected)

$$
A_{ii} = 0 \t A_{i \neq j} = 1
$$

$$
L = L_{\text{max}} = \frac{N(N-1)}{2} \t < k > = N-1
$$

Actor network, protein-protein interactions

The key basic quantities

- П Degree distribution: about connectivity
	- ▔ **•** what is the typical degree in the network?
	- ▔ **Notable 12 Sepandia Fig. 2** what is the overall distribution?
- Network diameter: about social distance
	- ▔ maximum (worst-case) or average?
	- ▔ exclude infinite distances? (disconnected components)
	- **the small-world phenomenon**
- **Number 19 Mark 19 September 2018 12 Mark 19 September 2018 12 Mark 19 September 2019 12 Septemb**
	- to what extent that links tend to cluster "locally"?
	- what is the balance between local and long-distance connections?
	- **u** what roles do the two types of links play?
- **Connected components: about social partitioning**
	- how many, and how large?

Degree distribution

- T **The degree** of a vertex in a network is the number of edges incident on (i.e., connected to) that vertex.
- \blacksquare \blacksquare have degree k. $_{\mathsf{k}}$ = the fraction of vertices in the network that
- T. **E**quivalently, $\mathbf{p_k}$ chosen uniformly at random has **degree k**. k_{R} = the **probability** that a vertex
- T. A plot of **pk** by a **histogram** of the degrees of vertices. $_{\mathsf{k}}$ for any given network can be formed
- П This histogram is the **degree distribution** for the network

Degree distribution

Degree distribution $P(k)$: probability that a randomly chosen vertex has degree k

Nk = # nodes with degree k $P(k) = N_k / N \rightarrow$ **plot**

Size of Cities

There is an equivalent number of people living in cities of all sizes!

After Bill enters the arena the average income of the public ∼ **USD \$1,000,000**

∼ \sim \$50 billion

Degree distributions for six networks

Actor Connectivity (power law)

Days of Thunder (1990) Far and Away (1992) Eyes Wide Shut (1999)

Nodes: actors **Links**: cast jointly

N = 212,250 actors $\langle \mathbf k \rangle$ = 28.78

 $P(k) \sim k^{\gamma}$

 $y=2.3$

MACADI - 120

Analisi di reti sociali - Aprile 2011

Science Citation Index (power law)

* citation total may be skewed because of multiple authors with the same name

Sex-Web (power law)

Nodes: people (Females; Males) **Links:** sexual relationships

Liljeros et al. Nature 20014781 Swedes; 18-74; 59% response rate.

A *path is* a sequence of nodes in which each node is adjacent to the next one

 $P_{\textit{io,in}}$ of length *n* between nodes i₀ and i_n is an ordered collection of *n*+1 nodes and *n* links

$$
P_n = \{i_0, i_1, i_2, \ldots, i_n\} \qquad P_n = \{ (i_0, i_1), (i_1, i_2), (i_2, i_3), \ldots, (i_{n-1}, i_n) \}
$$

•A path can intersect itself and pass through the same link repeatedly. Each time a link is crossed, it is counted separately

•A legitimate path on the graph on the right: **ABCBCADEEBA**

• In a directed network, the path can follow only the direction of an arrow. direction of an arrow.

Distance Between A and B?

DISTANCE IN A GRAPH | Shortest Path, Geodesic Path

The *distance (shortest path, geodesic path)* between two nodes is defined as the number of edges along the shortest path connecting them.

*If the two nodes are disconnected, the distance is infinity.

In directed graphs each path needs to follow the direction of the arrows.

Thus in a digraph the distance from node A to B (on an AB path) is generally different from the distance from node B to A (on a BCA path).

Diameter: the maximum distance between any pair of nodes in the graph.

Average path length/distance for a direct connected graph (component) or a strongly connected (component of a) digraph.

where \textit{l}_{ij} is the distance from node \textit{i} to node \textit{j}

$$
\big\!\big/\!\!\!\equiv\!\frac{1}{2L_{\max}}\!\sum_{i,j\neq i}\!\!I_{\!ij}\!
$$

In an undirected (symmetrical) graph l_{ij} = l_{ji} , we only need to count them once

$$
\langle l \rangle \equiv \frac{1}{L_{\max l,j>i}} \sum_{i}
$$

$$
L_{\max} = \binom{N}{2} = \frac{N(N-1)}{2}
$$

IT IS A SMALL WORLD

Stanley Milgram found that the average length of the chain connecting the sender and receiver was of length 5.5.

But only a few chains were ever completed!

CLUSTERING COEFFICIENT

Clustering coefficient: \ast

what portion of your neighbors are connected?

- Node i with degree kⁱ 来。
- C_i in [0,1] \star

CLUSTERING COEFFICIENT

Clustering coefficient: what portion of your neighbors are connected?

***** Node i with degree ki

*i=8: k8=2, e8=1, TOT=2*1/2=1* ➔ *^C8=1/1=1*

CLUSTERING COEFFICIENT

Clustering coefficient: what portion of your neighbors are connected?

* Node i with degree ki

*i=4: k4=4, e4=2, TOTAL=4*3/2=6* ➔ *^C4=2/6=1/3*

Degree distribution: P(k)

Path length:

Clustering coefficient:

l

Transitivity – the clustering coefficient

An alternative definition of the clustering coefficient, also widely used, has been given by Watts and Strogatz [416], who proposed defining a local value

$$
C_i = \frac{\text{number of triangles connected to vertex } i}{\text{number of triples centered on vertex } i}.
$$
 (5)

For vertices with degree 0 or 1, for which both numerator and denominator are zero, we put $C_i = 0$. Then the clustering coefficient for the whole network is the average

$$
C = \frac{1}{n} \sum_{i} C_i.
$$
 (6)

Basic statisics for some published networks

The giant connected component

Analisi di reti sociali - Aprile 2011

A "Canonical" Natural Network has…

- $\mathcal{C}^{\mathcal{A}}$ Few connected components:
	- π **o** often only 1 or a small number, indep. of network size
- $\mathcal{C}^{\mathcal{A}}$ Small diameter:
	- П **.** often a constant independent of network size (like 6)
	- π **or perhaps growing only logarithmically with network size** or even shrink?
	- П **u** typically exclude infinite distances
- $\mathcal{C}^{\mathcal{A}}$ A *high* degree of clustering:
	- П **Ex considerably more so than for a random network**
	- π **n** in tension with small diameter
- Т. A *heavy-tailed* degree distribution:
	- П a small but reliable number of high-degree vertices
	- П **o** often of *power law* form