Web mining and Social Network Analysis Dino Pedreschi pedre@di.unipi.it

Lecture 2 – Graphs and networks

Diapositiva 1

DP1 Dino Pedreschi; 15/04/2011

"Natural" Networks and Universality

- Consider many kinds of networks:
 - social, technological, business, economic, content,...
- These networks tend to share certain *informal* properties:
 - large scale; continual growth
 - distributed, organic growth: vertices "decide" who to link to
 - interaction restricted to links
 - mixture of local and long-distance connections
 - abstract notions of distance: geographical, content, social,...
- Do natural networks share more *quantitative* universals?
- What would these "universals" be?
- How can we make them precise and measure them?
- How can we explain their universality?
- This is the domain of *social network theory*
- Sometimes also referred to as *link analysis*

Graphs as common language

Choosing the proper representation

- •The choice of the proper network representation determines our ability to use network theory successfully.
 - In some cases there is a unique, unambiguous representation.
 - •In other cases, the representation is by no means unique.

•For example, for a group of individuals, the way you assign the links will determine the nature of the question you can study.

CHOOSING A PROPER REPRESENTATION

The structure of adolescent romantic and sexual networks

If you connect those that have a sexual relationship, you will be exploring the sexual networks.

Bearman PS, Moody J, Stovel K. Institute for Social and Economic Research and Policy - Columbic University http://researchnews.osu.edu/archive/chainspix.htm

If you connect individuals based on their first name (*all Peters connected to each other*), you will be exploring what?

It is a network, nevertheless.

GRAPHOLOGY 1

Actor network, protein-protein interactions

WWW, citation networks Analisi di reti sociali - Aprile 2011

GRAPHOLOGY 2

protein-protein interactions, www

Call Graph, metabolic networks Analisi di reti sociali - Aprile 2011

(ununcoteu)

$$A_{ij} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A_{ii} = 0 \qquad A_{i \neq j} = 1$$
$$L = L_{\max} = \frac{N(N-1)}{2} \qquad < k >= N-1$$

Actor network, protein-protein interactions

The key basic quantities

- Degree distribution: about connectivity
 - what is the typical degree in the network?
 - what is the overall distribution?
- Network diameter: about social distance
 - maximum (worst-case) or average?
 - exclude infinite distances? (disconnected components)
 - the small-world phenomenon
- Clustering : about social transitivity
 - to what extent that links tend to cluster "locally"?
 - what is the balance between local and long-distance connections?
 - what roles do the two types of links play?
- Connected components: about social partitioning
 - how many, and how large?

Degree distribution

- The degree of a vertex in a network is the number of edges incident on (i.e., connected to) that vertex.
- **p**_k = the fraction of vertices in the network that have degree k.
- Equivalently, p_k = the probability that a vertex chosen uniformly at random has degree k.
- A plot of p_k for any given network can be formed by a histogram of the degrees of vertices.
- This histogram is the **degree distribution** for the network

Degree distribution

Degree distribution P(k): probability that a randomly chosen vertex has degree k

 $N_k = \#$ nodes with degree k $P(k) = N_k / N \rightarrow plot$

Size of Cities

There is an equivalent number of people living in cities of all sizes!

After Bill enters the arena the average income of the public $\sim USD$ \$1,000,000

 \sim \$50 billion

Degree distributions for six networks

Actor Connectivity (power law)

Days of Thunder (1990) Far and Away (1992) Eyes Wide Shut (1999)

N = 212,250 actors

 $\langle \mathbf{k} \rangle = 28.78$

 $P(k) \sim k^{-\gamma}$

 $\gamma = 2.3$

10000001 ---- EX

Nodes: actors Links: cast jointly

Science Citation Index (power law)

* citation total may be skewed because of multiple authors with the same name

Sex-Web (power law)

Nodes: people (Females; Males) **Links:** sexual relationships

4781 Swedes; 18-74; 59% response rate. Liljeros et al. Nature 2001

A path is a sequence of nodes in which each node is adjacent to the next one

 $P_{i0,in}$ of length *n* between nodes i_0 and i_n is an ordered collection of *n*+1 nodes and *n* links

$$P_n = \{i_0, i_1, i_2, \dots, i_n\} \qquad P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), \dots, (i_{n-1}, i_n)\}$$

•A path can intersect itself and pass through the same link repeatedly. Each time a link is crossed, it is counted separately

•A legitimate path on the graph on the right: **ABCBCADEEBA**

• In a directed network, the path can follow only the direction of an arrow.

Distance Between A and B?

DISTANCE IN A GRAPH

The *distance (shortest path, geodesic path)* between two nodes is defined as the number of edges along the shortest path connecting them.

*If the two nodes are disconnected, the distance is infinity.

In directed graphs each path needs to follow the direction of the arrows.

Thus in a digraph the distance from node A to B (on an AB path) is generally different from the distance from node B to A (on a BCA path).

Diameter: the maximum distance between any pair of nodes in the graph.

Average path length/distance for a direct connected graph (component) or a strongly connected (component of a) digraph.

where I_{ij} is the distance from node *i* to node j

$$\langle l \rangle \equiv \frac{1}{2L_{\max i, j \neq i}} \sum_{l \neq i} l_{ij}$$

In an undirected (symmetrical) graph $I_{ij} = I_{ji}$, we only need to count them once

$$\langle l \rangle = \frac{1}{L_{\max i, j > i}} \int_{ij} I_{ij}$$

$$L_{\max} = \binom{N}{2} = \frac{N(N-1)}{2}$$

IT IS A SMALL WORLD

Stanley Milgram found that the average length of the chain connecting the sender and receiver was of length 5.5.

But only a few chains were ever completed!

CLUSTERING COEFFICIENT

***** Clustering coefficient:

what portion of your neighbors are connected?

- * Node i with degree ki
- * C_i in [0,1]

CLUSTERING COEFFICIENT

- Clustering coefficient: what portion of your neighbors are connected?
 - * Node i with degree ki

i=8: k_8 =2, e_8 =1, TOT=2*1/2=1 $\rightarrow C_8$ =1/1=1

CLUSTERING COEFFICIENT

Clustering coefficient: what portion of your neighbors are connected?

* Node i with degree ki

i=4: $k_4=4$, $e_4=2$, TOTAL=4*3/2=6 \rightarrow $C_4=2/6=1/3$

Degree distribution: P(k)

Path length:

Clustering coefficient:

/

Transitivity – the clustering coefficient

An alternative definition of the clustering coefficient, also widely used, has been given by Watts and Strogatz [416], who proposed defining a local value

$$C_i = \frac{\text{number of triangles connected to vertex }i}{\text{number of triples centered on vertex }i}.$$
 (5)

For vertices with degree 0 or 1, for which both numerator and denominator are zero, we put $C_i = 0$. Then the clustering coefficient for the whole network is the average

$$C = \frac{1}{n} \sum_{i} C_i. \tag{6}$$

Basic statisics for some published networks

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	L
social	film actors	undirected	449913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	
	company directors	undirected	7673	55392	14.44	4.60	_	0.59	0.88	0.276	
	math coauthorship	undirected	253339	496489	3.92	7.57	_	0.15	0.34	0.120	
	physics coauthorship	undirected	52909	245300	9.27	6.19	_	0.45	0.56	0.363	
	biology coauthorship	undirected	1520251	11803064	15.53	4.92	_	0.088	0.60	0.127	
	telephone call graph	undirected	47000000	80 000 000	3.16		2.1				
	email messages	directed	59912	86300	1.44	4.95	1.5/2.0		0.16		
	email address books	directed	16881	57029	3.38	5.22	_	0.17	0.13	0.092	
	student relationships	undirected	573	477	1.66	16.01	_	0.005	0.001	-0.029	
	sexual contacts	undirected	2810				3.2				
information	WWW nd.edu	directed	269504	1497135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	Γ
	WWW Altavista	directed	203549046	2130000000	10.46	16.18	2.1/2.7				
	citation network	directed	783339	6716198	8.57		3.0/-				
	Roget's Thesaurus	directed	1022	5103	4.99	4.87	_	0.13	0.15	0.157	
	word co-occurrence	undirected	460902	17000000	70.13		2.7		0.44		L
technological	Internet	undirected	10697	31992	5.98	3.31	2.5	0.035	0.39	-0.189	
	power grid	undirected	4941	6594	2.67	18.99	_	0.10	0.080	-0.003	
	train routes	undirected	587	19603	66.79	2.16	_		0.69	-0.033	
	software packages	directed	1439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	
	software classes	directed	1377	2213	1.61	1.51	_	0.033	0.012	-0.119	
	electronic circuits	undirected	24097	53248	4.34	11.05	3.0	0.010	0.030	-0.154	
	peer-to-peer network	undirected	880	1296	1.47	4.28	2.1	0.012	0.011	-0.366	L
biological	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	
	protein interactions	undirected	2115	2240	2.12	6.80	2.4	0.072	0.071	-0.156	
	marine food web	directed	135	598	4.43	2.05	—	0.16	0.23	-0.263	
	freshwater food web	directed	92	997	10.84	1.90	_	0.20	0.087	-0.326	
	neural network	directed	307	2359	7.68	3.97	—	0.18	0.28	-0.226	

The giant connected component

Analisi di reti sociali - Aprile 2011

A "Canonical" Natural Network has...

- *Few* connected components:
 - often only 1 or a small number, indep. of network size
- Small diameter:
 - often a constant independent of network size (like 6)
 - or perhaps growing only logarithmically with network size or even shrink?
 - typically exclude infinite distances
- A *high* degree of clustering:
 - considerably more so than for a random network
 - in tension with small diameter
- A *heavy-tailed* degree distribution:
 - a small but reliable number of high-degree vertices
 - often of *power law* form