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“Natural” Networks and UniversalityNatural  Networks and Universality

Consider many kinds of networks:
social, technological, business, economic, content,…

These networks tend to share certain informal properties:
large scale; continual growthlarge scale; continual growth
distributed, organic growth: vertices “decide” who to link to
interaction restricted to links
mixture of local and long-distance connections
abstract notions of distance: geographical, content, social,…

Do natural networks share more quantitative universals?Do natural networks share more quantitative universals?
What would these “universals” be?
How can we make them precise and measure them?
H l i h i i li ?How can we explain their universality?
This is the domain of social network theory
Sometimes also referred to as link analysis
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So et es a so e e ed to as a a ys s



Some Interesting QuantitiesSome Interesting Quantities

Connected components:
how many, and how large?

Network diameter:
maximum (worst case) or average?maximum (worst-case) or average?
exclude infinite distances? (disconnected components)
the small-world phenomenonp

Clustering:
to what extent that links tend to cluster “locally”?
what is the balance between local and long-distance connections?
what roles do the two types of links play?

Degree distribution:Degree distribution:
what is the typical degree in the network?
what is the overall distribution?
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The small-world effecte s a o d e ec
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Transitivity – the clustering coefficienta s y e c us e g coe c e
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Transitivity – the clustering coefficienta s y e c us e g coe c e
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Transitivity – the clustering coefficienta s y e c us e g coe c e
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Degree distributioneg ee d s u o

The degree of a vertex in a network is theThe degree of a vertex in a network is the 
number of edges incident on (i.e., connected to) 
that vertexthat vertex. 
pk = the fraction of vertices in the network that 
have degree khave degree k. 
Equivalently, pk = the probability that a vertex 
h if l t d h d kchosen uniformly at random has degree k.

A plot of pk for any given network can be formed 
by a histogram of the degrees of vertices. 
This histogram is the degree distribution for g g
the network
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Degree distributions for six networks
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Actor Connectivity (power law)Actor Connectivity (power law)

Nodes: actors    
Links: cast jointly

Days of Thunder (1990) 
Far and Away     (1992)  
Eyes Wide Shut (1999) Links: cast jointlyEyes Wide Shut  (1999)

N = 212,250 actors     
〈k〉 = 28.78〈k〉  28.78

P(k) ~k-γ

γ=2.3
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Science Citation Index (power law)

25

Nodes: papers 
Links: citations

5

Links: citations
Witten-Sander

PRL 1981
22121736 PRL papers (1988)

P(k) ~k-γ

(γ = 3)
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(S. Redner, 1998)



Sex-Web (power law)(p )

Nodes: people (Females; Males)Nodes: people (Females; Males)
Links: sexual relationships

4781 Swedes; 18-74; 
59% t
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Liljeros et al. Nature 2001
59% response rate.



Basic statisics for some published networks
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A “Canonical” Natural Network hasA Canonical  Natural Network has…

Few connected components:
often only 1 or a small number, indep. of network size

Small diameter:
often a constant independent of network size (like 6)
or perhaps growing only logarithmically with network size 
or even shrink?or even shrink?
typically exclude infinite distances

A high degree of clustering:A high degree of clustering:
considerably more so than for a random network
in tension with small diameterin tension with small diameter

A heavy-tailed degree distribution:
a small but reliable number of high-degree vertices
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g g
often of power law form



Probabilistic Models of NetworksProbabilistic Models of Networks

All of the network generation models we will study areAll of the network generation models we will study are 
probabilistic or statistical in nature
They can generate networks of any sizey g y
They often have various parameters that can be set:

size of network generated
average degree of a vertex
fraction of long-distance connections

Th d l di ib i kThe models generate a distribution over networks
Statements are always statistical in nature:

ith hi h b bilit di t i llwith high probability, diameter is small
on average, degree distribution has heavy tail

Thus we’re going to need some basic statistics and
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Thus, we re going to need some basic statistics and 
probability theory



Social Network Analysisy

S i l N k I d iSocial Network Introduction

Statistics and Probability TheoryStatistics and Probability Theory

Models of Social Network GenerationModels of Social Network Generation

Networks in Biological SystemNetworks in Biological System

Mining on Social Networkg

Summary
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Probability and Random VariablesProbability and Random Variables
A random variable X is simply a variable that probabilistically assumes 
values in some setvalues in some set

set of possible values sometimes called the sample space S of X
sample space may be small and simple or large and complex

S = {Heads, Tails}, X is outcome of a coin flip
S = {0,1,…,U.S. population size}, X  is number voting democratic
S = all networks of size N, X is generated by preferential attachmentS  all networks of size N, X  is generated by preferential attachment

Behavior of X determined by its distribution (or density)
f h l i S if P [X ]for each value x in S, specify Pr[X = x]
these probabilities sum to exactly 1 (mutually exclusive outcomes)
complex sample spaces (such as large networks):p p p ( g )

distribution often defined implicitly by simpler components
might specify the probability that each edge appears independently
thi induces b bilit di t ib ti networks
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this induces a probability distribution over networks
may be difficult to compute induced distribution



Some Basic Notions and LawsSome Basic Notions and Laws

Independence:
let X and Y be random variables
independence: for any x and y, Pr[X = x & Y = y] = Pr[X=x]Pr[Y=y]
intuition: value of X does not influence value of Y, vice-versa
d ddependence:

e.g. X, Y coin flips, but Y is always opposite of X
Expected (mean) value of X:

only makes sense for numeric random variablesonly makes sense for numeric random variables
“average” value of X according to its distribution
formally, E[X] = Σ (Pr[X = x] X), sum is over all x in S
f d d boften denoted by μ

always true: E[X + Y] = E[X] + E[Y]
true only for independent random variables: E[XY] = E[X]E[Y]

V i f XVariance of X:
Var(X) = E[(X – μ)^2]; often denoted by σ^2
standard deviation is sqrt(Var(X)) = σ

U i b d
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Union bound:
for any X, Y, Pr[X=x & Y=y] <= Pr[X=x] + Pr[Y=y]



Convergence to ExpectationsConvergence to Expectations

Let X1, X2,…, Xn be: 1, 2, , n

independent random variables 
with the same distribution Pr[X=x]

2expectation μ = E[X] and variance σ2

independent and identically distributed (i.i.d.)
essentially n repeated “trials” of the same experimentessentially n repeated trials  of the same experiment
natural to examine r.v. Z = (1/n) Σ Xi, where sum is over i=1,…,n
example: number of heads in a sequence of coin flips
example: degree of a vertex in the random graph model
E[Z] = E[X]; what can we say about the distribution of Z?

Central Limit Theorem:
as n becomes large Z becomes normally distributed
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as n becomes large, Z becomes normally distributed
with expectation μ and variance σ2/n



The Normal DistributionThe Normal Distribution

The normal or Gaussian density:
applies to continuous, real-valued random variables
characterized by mean (average) m and standard deviation y ( g )
s
density at x is defined as 

(1/(σ sqrt(2π))) exp(-(x-μ)2/2σ2)
special case μ = 0, σ = 1: a exp(-x2/b) for some constants a,b > 0

k t th di ff ti ll idlpeaks at x = μ, then dies off exponentially rapidly
the classic “bell-shaped curve”

h b d t texam scores, human body temperature, 

remarks:
can control mean and standard deviation independently
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can control mean and standard deviation independently
can make as “broad” as we like, but always have finite variance



The Normal DistributionThe Normal Distribution
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The Binomial DistributionThe Binomial Distribution

coin with Pr[heads] = p flip n timescoin with Pr[heads] = p, flip n times

probability of getting exactly k heads:

choose(n,k) pk(1-p)n-k

f l d fi dfor large n and p fixed:
approximated well by a normal withapproximated well by a normal with 

μ = np, σ = sqrt(np(1-p))

σ/μ 0 as n grows

l d t t l d i ti b d
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leads to strong large deviation bounds



The Binomial DistributionThe Binomial Distribution

www.professionalgambler.com/ binomial.html
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The Poisson DistributionThe Poisson Distribution

like binomial, applies to variables taken on integer values > 0like binomial, applies to variables taken on integer values  0 

often used to model counts of events

number of phone calls placed in a given time periodnumber of phone calls placed in a given time period

number of times a neuron fires in a given time period

i l f t λsingle free parameter λ

probability of exactly x events:

exp(-λ) λx/x!

mean and variance are both λ

binomial distribution with n large, p = λ/n (λ fixed)

converges to Poisson with mean λ
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co e ges to o sso t ea λ



The Poisson DistributionThe Poisson Distribution

single photoelectron distribution
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single photoelectron distribution 



Heavy-tailed DistributionsHeavy tailed Distributions

Pareto or power law distributions:Pareto or power law distributions: 
for variables assuming integer values > 0
probability of value x ~ 1/x^a
typically 0 < a < 2; smaller a gives heavier tail
sometimes also referred to as being scale-free

For binomial normal and Poisson distributions the tailFor binomial, normal, and Poisson distributions the tail 
probabilities approach 0 exponentially fast 
I l i l d i ti l dInverse polynomial decay vs. inverse exponential decay
What kind of phenomena does this distribution model?
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What kind of process would generate it?



Heavy-Tailed Distributionsea y a ed s u o s
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Distributions vs. Data

All these distributions are idealized models
In practice we do not see distributions but dataIn practice, we do not see distributions, but data
Thus, there will be some largest value we observe
Also, can be difficult to “eyeball” data and choose model
S h d di i i h b P i l ?So how do we distinguish between Poisson, power law, etc?
Typical procedure:

might restrict our attention to a range of values of interest
accumulate counts of observed data into equal-sized bins
look at counts on a log-log plot
note that

power law: 
log(Pr[X = x]) = log(1/xα) = -α log(x) 
linear, slope –α

Normal: 
log(Pr[X = x]) = log(a exp(-x2/b)) = log(a) – x2/b
non-linear, concave near mean 

Poisson:
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Poisson: 
log(Pr[X = x]) = log(exp(-λ) λx/x!) 
also non-linear



Zipf’s LawZipf s Law
Look at the frequency of English words:

“the” is the most common, followed by “of”, “to”, etc.
claim: frequency of the n-th most common ~ 1/n (power 
law α = 1)law, α = 1)

General theme:
rank events by their frequency of occurrencey q y
resulting distribution often is a power law!

Other examples:
N h A i i iNorth America city sizes
personal income
file sizesfile sizes
genus sizes (number of species)

People seem to dither over exact form of these distributions 
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p
(e.g. value of α), but not heavy tails



Zipf’s Lawp s a

The same data plotted on linear and logarithmic scales. 
Both plots show a Zipf distribution with 300 datapoints 

Linear scales on both axes Logarithmic scales on both axes 
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