Data Mining Association Analysis: Basic Concepts and Algorithms

Lecture Notes for Chapter 6

Introduction to Data Mining by Tan, Steinbach, Kumar

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 $\begin{aligned} & \{\text{Diaper}\} \rightarrow \{\text{Beer}\}, \\ & \{\text{Milk, Bread}\} \rightarrow \{\text{Eggs,Coke}\}, \\ & \{\text{Beer, Bread}\} \rightarrow \{\text{Milk}\}, \end{aligned}$

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. $s({Milk, Bread, Diaper}) = 2/5$
- Frequent Itemset
 - An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

4/18/2004

Definition: Association Rule

• Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example: {Milk, Diaper} \rightarrow {Beer}

• Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example: {Milk, Diaper} \Rightarrow Beer $s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support \geq *minsup* threshold
 - confidence ≥ *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
 - \Rightarrow Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
 - Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

• Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Illustrating Apriori Principle

Apriori Algorithm

- Method:
 - Let k=1
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Reducing Number of Comparisons

• Candidate counting:

- Scan the database of transactions to determine the support of each candidate itemset
- To reduce the number of comparisons, store the candidates in a hash structure

 Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:

 $\{1 \ 4 \ 5\}, \{1 \ 2 \ 4\}, \{4 \ 5 \ 7\}, \{1 \ 2 \ 5\}, \{4 \ 5 \ 8\}, \{1 \ 5 \ 9\}, \{1 \ 3 \ 6\}, \{2 \ 3 \ 4\}, \{5 \ 6 \ 7\}, \{3 \ 4 \ 5\}, \{3 \ 5 \ 6\}, \{3 \ 5 \ 7\}, \{6 \ 8 \ 9\}, \{3 \ 6 \ 7\}, \{3 \ 6 \ 8\}$

You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004

Subset Operation

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Compact Representation of Frequent Itemsets

• Some itemsets are redundant because they have identical support as their supersets

TID	A1	A2	A3	A 4	A 5	A 6	A7	A 8	A 9	A10	B1	B 2	B3	B 4	B5	B6	B7	B 8	B 9	B10	C1	C2	C3	C4	C5	C6	C 7	C 8	C 9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

• Number of frequent itemsets $= 3 \times \sum_{k=1}^{10}$

$$imes \sum_{k=1}^{10} \begin{pmatrix} 10 \\ k \end{pmatrix}$$

• Need a compact representation

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent

Closed Itemset

• An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	{A,B}
2	{B,C,D}
3	${A,B,C,D}$
4	{A,B,D}
5	${A,B,C,D}$

ltemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

ltemset	Support
{A,B,C}	2
{A,B,D}	3
{A,C,D}	2
{B,C,D}	3
{A,B,C,D}	2

Maximal vs Closed Itemsets

Maximal vs Closed Frequent Itemsets

Maximal vs Closed Itemsets

Traversal of Itemset Lattice

General-to-specific vs Specific-to-general

Traversal of Itemset Lattice

- Equivalent Classes

- Traversal of Itemset Lattice
 - Breadth-first vs Depth-first

(b) Depth first

(a) Breadth first

Representation of Database

horizontal vs vertical data layout

A,B,C

A,C,D

В

8

9

10

Vertical Data Layout

Α	В	С	D	Е
1	1	2	2	1
4	2	3 4	4	3 6
5	2 5 7	4	2 4 5 9	6
6	7	8 9	9	
7	8	9		
4 5 6 7 8 9	10			
9				

FP-growth Algorithm

 Use a compressed representation of the database using an FP-tree

 Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

FP-tree construction

© Tan, Steinbach, Kumar

Introduction to Data Mining

FP-Tree Construction

FP-growth

Conditional Pattern base for D: $P = \{(A:1,B:1,C:1), (A:1,B:1), (A:1,C:1), (A:1,C:1), (A:1), (B:1,C:1)\}$ Recursively apply FPgrowth on P

Frequent Itemsets found (with sup > 1): AD, BD, CD, ACD, BCD

Tree Projection

Tree Projection

- Items are listed in lexicographic order
- Each node P stores the following information:
 - Itemset for node P
 - List of possible lexicographic extensions of P: E(P)
 - Pointer to projected database of its ancestor node
 - Bitvector containing information about which transactions in the projected database contain the itemset

Projected Database

Original Database:

TID	Items
1	{A,B}
2	{B,C,D}
3	${A,C,D,E}$
4	{A,D,E}
5	{A,B,C}
6	${A,B,C,D}$
7	{B,C}
8	{A,B,C}
9	{A,B,D}
10	{B,C,E}

Projected Database for node A:

TID	Items
1	{B}
2	{}
3	{C,D,E}
4	{D,E}
5	{B,C}
6	{B,C,D}
7	{}
8	{B,C}
9	{B,D}
10	{}

For each transaction T, projected transaction at node A is $T \cap E(A)$

© Tan, Steinbach, Kumar

ECLAT

• For each item, store a list of transaction ids (tids)

ECLAT

 Determine support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets.

- 3 traversal approaches:
 - top-down, bottom-up and hybrid
- Advantage: very fast support counting
- Disadvantage: intermediate tid-lists may become too large for memory

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

$ABC \rightarrow D$,	$ABD \rightarrow C$,	$ACD \rightarrow B$,	$BCD \to A,$
$A \rightarrow BCD$,	$B \rightarrow ACD,$	$C \rightarrow ABD$,	$D \rightarrow ABC$
$AB \rightarrow CD$,	$AC \rightarrow BD$,	$AD \to BC,$	$BC \to AD,$
$BD \to AC,$	$CD \rightarrow AB$,		

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$
 - But confidence of rules generated from the same itemset has an anti-monotone property

$$-$$
 e.g., L = {A,B,C,D}:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

46

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC

 Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Pisa KDD Laboratory

http://www-kdd.isti.cnr.it

FP-growth Mining of Frequent Itemsets + Constraint-based Mining

Francesco Bonchi

e-mail: francesco.bonchi@isti.cnr.it

homepage: http://www-kdd.isti.cnr.it/~bonchi/

Is Apriori Fast Enough — Any Performance Bottlenecks?

- The core of the Apriori algorithm:
 - Use frequent (k 1)-itemsets to generate <u>candidate</u> frequent k-itemsets
 - Use database scan and pattern matching to collect counts for the candidate itemsets
- The bottleneck of Apriori: <u>candidate generation</u>
 - Huge candidate sets:
 - 10⁴ frequent 1-itemset will generate 10⁷ candidate 2-itemsets
 - To discover a frequent pattern of size 100, e.g., {a₁, a₂, ..., a₁₀₀}, one needs to generate 2¹⁰⁰ ≈ 10³⁰ candidates.
 - Multiple scans of database:
 - Needs (n +1) scans, n is the length of the longest pattern

Mining Frequent Patterns Without Candidate Generation

- Compress a large database into a compact, <u>Frequent-Pattern tree</u> (<u>FP-tree</u>) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!

How to Construct FP-tree from a Transactional Database?

52

Benefits of the FP-tree Structure

- Completeness:
 - never breaks a long pattern of any transaction
 - preserves complete information for frequent pattern mining
- Compactness
 - reduce irrelevant information—infrequent items are gone
 - frequency descending ordering: more frequent items are more likely to be shared
 - never be larger than the original database (if not count node-links and counts)

Mining Frequent Patterns Using FP-tree

- General idea (divide-and-conquer)
 - Recursively grow frequent pattern path using the FPtree
- Method
 - For each item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

Major Steps to Mine FP-tree

- 1) Construct conditional pattern base for each node in the FP-tree
- 2) Construct conditional FP-tree from each conditional pattern-base
- *3)* Recursively mine conditional FP-trees and grow frequent patterns obtained so far
- 4) If the conditional FP-tree contains a single path, simply enumerate all the patterns

Step 1: From FP-tree to Conditional Pattern Base

- Starting at the frequent header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

<u>item</u>	cond. pattern base
С	<i>f:3</i>
a	fc:3
b	fca:1, f:1, c:1
т	fca:2, fcab:1
р	fcam:2, cb:1

Properties of FP-tree for Conditional Pattern Base Construction

- Node-link property
 - For any frequent item a_i, all the possible frequent patterns that contain a_i can be obtained by following a_i's node-links, starting from a_i's head in the FP-tree header
- Prefix path property
 - To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P need to be accumulated, and its frequency count should carry the same count as node a_i.

Step 2: Construct Conditional FP-tree

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Mining Frequent Patterns by Creating Conditional Pattern Bases

Item	Conditional pattern-base	Conditional FP-tree	
р	{(fcam:2), (cb:1)}	{(c:3)} p	
m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m	
b	{(fca:1), (f:1), (c:1)}	Empty	
۵	{(fc:3)}	{(f:3, c:3)} a	
С	{(f:3)}	{(f:3)} c	
f	Empty	Empty	

Step 3: recursively mine the conditional FP-tree

FP-tree
$$\{\}$$

Cond. pattern base of "am": (fc:3) $f:3$
 $f:3$
 $f:3$
 $f:3$
 $f:3$
 $f:3$
 $f:3$

cm-conditional FP-tree

{} | Cond. pattern base of "cam": (f:3) *f:3*

{ }

f:3

c:3

a:3

m-conditional

cam-conditional FP-tree

Single FP-tree Path Generation

- Suppose an FP-tree T has a single path P
- The complete set of frequent pattern of T can be generated by enumeration of all the combinations of the sub-paths of P

m-conditional **FP-tree**

Principles of Frequent Pattern Growth

- Pattern growth property
 - Let α be a frequent itemset in DB, B be α's conditional pattern base, and β be an itemset in B.
 Then α ∪ β is a frequent itemset in DB iff β is frequent in B.
- "abcdef" is a frequent pattern, if and only if
 - "abcde " is a frequent pattern, and
 - "f" is frequent in the set of transactions containing
 "abcde"

