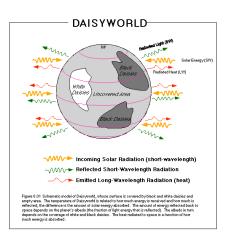
Modellistica ambientale a.a. 2009/10 Daisy World

L'ipotesi Gaia (1)

- L'ipotesi Gaia fu formulata negli anni '70 da James Lovelock, un chimico dell'atmosfera, che lavorava presso la NASA alla missione Viking per l'esplorazione di Marte.
- L'idea di base è che non è tanto l'ambiente favorevole che ha permesso la nascita della vita, quanto piuttosto che è la vita che ha dato forma all'ambiente sulla base delle sue esigenze.
- Secondo questa ipotesi la terra sarebbe un unico organismo vivente di cui l'uomo è solamente una delle sue componenti.

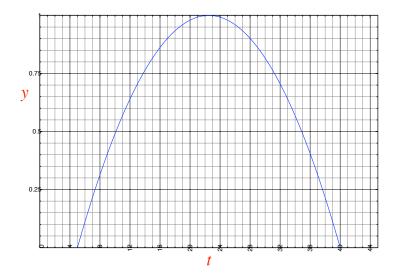

L'ipotesi Gaia (2)

- L'ipotesi Gaia suscitò un notevole dibattito, ma fu anche molto discussa e criticata.
- Una delle accuse fu di "teleologismo". La natura, fu detto, non guarda avanti né persegue degli scopi.
- Per rispondere a queste critiche, Watson e Lovelock, nel 1983, costruirono il modello DaisyWorld, allo scopo di dimostrare come basti il concetto di Omeostasi per spiegare il complesso equilibrio raggiunto dalla natura, senza la necessità di ricorrere a spiegazioni di tipo teleologico.
- Per una articolata descrizione dell'ipotesi, della sua nascita, del dibattito che ha creato nella comunità scientifica e delle argomentazioni scientifiche che la mettono in discussione, si rimanda al documento "Ipotesi Gaia" che si trova nel sito web del corso e che è ripreso da

http://www.oceansonline.com/gaiaho.htm

Il modello DaisyWorld

Immaginiamo un mondo in cui ci siano solo due tipi di popolazione, margherite bianche e margherite nere. Le prime hanno una albedo molto alta. mentre le seconde la hanno bassa. Objettivo del modello è studiare come il sistema risponde a variazioni di energia solare in arrivo in modo da mantenere le proprie condizioni di equilibrio. La superficie totale è di 1,000 ettari, di cui inizialmente 403 sono coperti da margherite bianche e 271 da margherite nere: il resto è libero.


Il modello: ipotesi

- Le margherite hanno una vita media di 3.3 anni, quindi un tasso di decrescita del 30% l'anno.
- Il tasso di crescita teorico delle margherite dipende dalla temperatura: ha valore 100% alla temperatura (ottima) di 22.5°C, e decresce al crescere o al diminuire della temperatura. Il valore 0 si raggiunge da un lato a 5°C e dall'altro a 40°C. Indicando con y il tasso di crescita e con t la temperatura, si ha:

$$y = 1 - 0.003265(22.5 - t)^2$$

- La temperatura nell'area coperta da margherite bianche è di 17.5576°C, mentre in quella coperta dalle nere è di 27.4424°C.
- Il tasso di crescita è il prodotto del tasso di crescita teorico e dell'indice di disponibilità di superficie cioè si riduce rispetto a quello teorico man mano che decresce la superficie libera.

Tasso di crescita teorico

Un primo modello: le variabili

Costruiamo un primo modello dell'equilibrio fra i due tipi di vegetazioni, assumendo, per il momento, che la temperatura sia data e sia quindi una variabile esogena. Ridenominiamo per semplicità le variabili:

Superficie Margherite Bianche	SMB
Superficie Margherite Nere	SMN
Crescita Margherite Bianche	CMB
Decrescita Margherite Bianche	DMB
Crescita Margherite Nere	CMN
Decrescita Margherite Nere	DMN
Tasso di Decrescita	TD
Superficie Totale	ST
Superficie Vuota	SV
Indice Disponibilità Superficie	IDS
Tasso Crescita Margherite Bianche	TCMB
Tasso Crescita Margherite Nere	TCMN
Tasso Teorico Crescita Bianche	TTCB
Tasso Teorico Crescita Nere	TTCN
Temperatura Margherite Bianche	TMB
Temperatura Margherite Nere	TMN

Le equazioni (1)

$$\frac{dSMB(t)}{dt} = CMB(t) - DMB(t)$$

$$\frac{dSMN(t)}{dt} = CMN(t) - DMN(t)$$

$$CMB(t) = SMB(t) \times TCMB(t)$$

$$CMN(t) = SMN(t) \times TCMN(t)$$

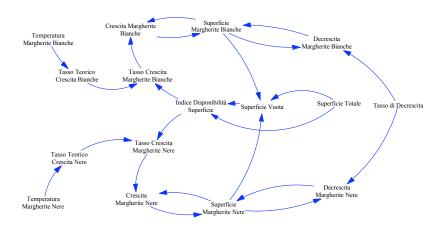
$$DMB(t) = SMB(t) \times TD(t)$$

$$DMN(t) = SMN(t) \times TD(t)$$

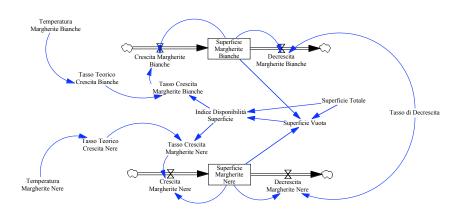
Le equazioni (2)

$$SV(t) = ST(t) - SMB(t) - SMN(t)$$

$$IDS(t) = \frac{SV(t)}{ST(t)}$$


$$TCMB(t) = TTCB(t) \times IDS(t)$$

$$TCMN(t) = TTCN(t) \times IDS(t)$$


$$TTCB(t) = 1 - 0.003265 \times (22.5 - TMB)^{2}$$

$$TTCN(t) = 1 - 0.003265 \times (22.5 - TMN)^{2}$$

Il modello di equilibrio delle due vegetazioni (1)

Il modello di equilibrio delle due vegetazioni (2)

Temperatura e radiazioni solari

Per quel che riguarda la temperatura, assumiamo che essa dipenda dall'intensità delle radiazioni solari e dalla frazione di tali radiazioni che viene assorbita.

Essa dipende quindi dai valori dell'albedo delle tre superfici che assumiamo siano:

Superficie	Albedo
Margherite Bianche	0.75
Vuota	0.50
Margherite Nere	0.25

(L'albedo è la frazione di radiazione che viene riflessa)

Albedo media e temperatura media (1)

L'albedo media del mondo immaginario di DaisyWorld è data da:

```
Albedo Media = [0.75x(Superficie Margherite Bianche) + 0.50x(Superficie Vuota) + 0.25x(Superficie Margherite Nere)] / Superfice Totale
```

La temperatura media è funzione dell'albedo media. C'è poi una variazione locale dovuta alle differenti albedo delle zone con margherite bianche e con margherite nere.

Albedo media e temperatura media (2)

Per il calcolo della temperatura media, assumiamo innanzitutto che il pianeta sia in condizioni di equilibrio, cioè che l'energia emessa dal pianeta sia uguale a quella assorbita dalle radiazioni solari. Si tratta di una ipotesi che è ragionevole nel medio termine. Quindi l'energia emessa è data dalla differenza fra quella ricevuta e

EnergiaEmessa = EnergiaRicevuta - EnergiaRiflessa

Per l'energia ricevuta poniamo:

EnergiaRicevuta =
$$FL \times CI \times \pi r^2$$

dove r è il raggio del del pianeta, FL il fattore di luminosità, che assumiamo vari fra 0.6 e 1.8, e CI la costante di irraggiamento che è posta a 3668 W/mq.

Infine abbiamo:

quella riflessa:

 $EnergiaRiflessa = EnergiaRicevuta \times AlbedoMedia$

Albedo media e temperatura media (3)

L'irradiazione in W/mq di un corpo nero è espressa come sT^4 , dove:

$$s = 5.669 \times 10^{-8}$$

è la costante di Stefan-Boltzmann e T è la temperatura assoluta (${}^{0}K$).

Quindi l'Energia Emessa (EM) dal pianeta è pari a:

$$EM = sT^4 4\pi r^2$$

Ed essendo:

EM = Energia Ricevuta - Energia Riflessa

= Energia Ricevuta x (1 -Albedo Media)

si ha:

$$sT^44\pi r^2 = FL \times CI \times \pi r^2(1 - AM)$$

da cui segue:

$$t = (FL \times (1 - AM) \times \frac{917}{5.669 \times 10^{-8}})^{\frac{1}{4}} - 273$$

Albedo media e temperatura media (4)

Localmente c'è una variazione di temperatura rispetto alla media (misurata in ${}^{0}C$) che dipende dall'albedo locale secondo la funzione:

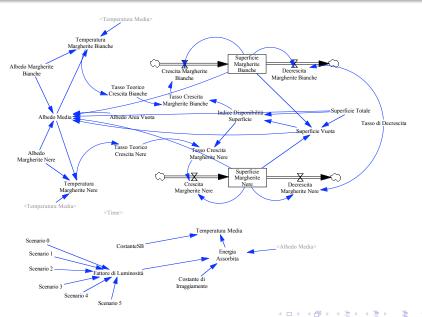
Variazione Temperatura = 20x(Albedo Media - Albedo Locale)

Osserviamo che la differenza di temperatura fra le aree con margherite nere e quelle con le bianche è sempre di $10^{0}\,\text{C}$. Infatti, indicando con TM la temperatura media e con AM l'albedo media, si ha:

$$TMN - TMB = TM + 20 \times (AM - 0.25) - (TM + 20 \times (AM - 0.75))$$

= $20 \times (0.75 - 0.25)$
= 10

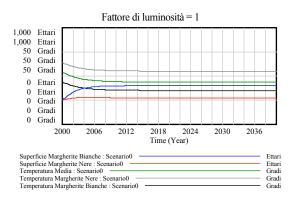
Albedo media e temperatura media (5)

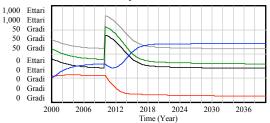

La temperatura nella zona delle margherite bianche è allora data dalla seguente relazione:

```
Temperatura Margherite Bianche = Temperatura media + 20 (Albedo Media -Albedo Margherite Bianche)
```

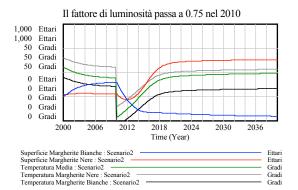
mentre per le margherite nere è data dalla seguente relazione:

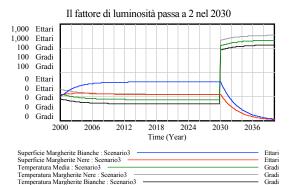
```
Temperatura Margherite Nere = Temperatura media + 20 (Albedo Media -Albedo Margherite Nere)
```


Il modello

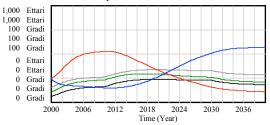

Sei diversi scenari

Scenario	Fattore di Luminosità
0	costante = 1
1	cresce bruscamente da 1 a 1.25 nel 2010
2	decresce bruscamente da 1 a 0.75 nel 2010
3	cresce bruscamente da 1 a 2 nel 2030
4	= 0.8 fino al 2010, poi cresce fino a 1.2 nel 2030
	e mantiene questo valore dopo
5	cresce da 0.6 a 1.8 fra il 2000 ed il 2200

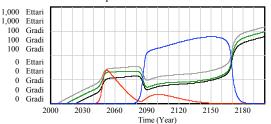

Il valore iniziale della superficie occupata dai ciascun tipo di margherita è stato assunto pari a 250 ettari negli scenari da 0 a 4, mentre nello scenario 5 è stato posto a 0.1 ettaro (il che corrisponde ad una situazione in cui non c'è praticamente vegetazione nel pianeta).



Il fattore di luminosità passa da 1 ad 1.25 nel 2010



Superficie Margherite Bianche : daisyworld Ettari
Superficie Margherite Nere : daisyworld Ettari
Temperatura Media : daisyworld Gradi
Temperatura Margherite Nere : daisyworld Gradi
Temperatura Margherite Nere : daisyworld Gradi
Temperatura Margherite Bianche : daisyworld Gradi



Il fattore di luminosità passa da 0.8 a 1.2 fra il 2010 ed il 2030

Superficie Margherite Bianche : Scenario4	 Ettari
Superficie Margherite Nere : Scenario4	 Ettari
Temperatura Media : Scenario4	 Gradi
Temperatura Margherite Nere : Scenario4 -	Gradi
Temperatura Margherite Bianche: Scenario4	 Gradi

Il fattore di luminosità passa da 0.6 a 1.8 fra il 2000 ed il 2200

Superficie Margherite Bianche : Scenario5 Superficie Margherite Nere : Scenario5	Ettari
Temperatura Media : Scenario5	Gradi
Temperatura Margherite Nere : Scenario5	Gradi
Temperatura Margherite Bianche : Scenario5	Gradi

Esercizi

- Studiare l'effetto di cambiamenti nelle albedo delle margherite, ad esempio assumendo che siano 0.4 e 0.6 per le nere e le bianche rispettivamente. Provare poi con i valori 0.05 e 0.95.
- Modificare il valore ottimo della temperatura ai fini della crescita da 22.5 a 15 e verificare l'effetto sul comportamento del modello.