Master Program in Data Science and Business Informatics Statistics for Data Science Lesson 33 - Fitting distributions. Testing independence/association

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

Distribution fitting and quality of fitting

- Dataset x_1, \ldots, x_n realization of $X_1, \ldots, X_n \sim F$
- Distribution fitting: What is a plausible F?
	- ▶ Useful in Data Science for understanding the data generation process, for checking assumptions (e.g., normality of noise in LR), for checking data distribution changes, etc.
	- ▶ Parametric approaches:
		- \Box Assume $F = F(\lambda)$ for some family F, and estimate λ as $\hat{\lambda}$
		- \Box Maximum Likelihood Estimation (point estimate): \Box [See Lesson 19]

$$
\hat{\lambda} = \text{argmax}_{\lambda} L(\lambda)
$$

□ Parametric bootstrap (p-value): [See Lesson 28]

$$
T_{ks} = \sup_{a \in \mathbb{R}} |F_n^*(a) - F_{\hat{\Lambda}^*}(a)|
$$

- ▶ Non-parametric approaches:
	- □ Empirical distribution Fⁿ [[Glivenko-Cantelli Thm](https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem)]
	- \Box Kernel Density Estimation \Box Kernel Density Estimation
- Quality of fitting: Among several fits F_1, \ldots, F_k , which one is the best?
	- \blacktriangleright Goodness of fit: measure of how good/bad is F_i in fitting the data?
	- ▶ Comparison: which one between two F_1 and F_2 is better?

Quality of fitting

- Loss functions (to be minimized)
	- \triangleright Akaike information criterion (AIC), balances model fit against model simplicity

$$
AIC(F(\lambda))=2|\lambda|-2\ell(\lambda)
$$

▶ Bayesian information criterion (BIC), stronger balances over model simplicity

$$
BIC(F(\lambda)) = |\lambda| \log n - 2\ell(\lambda)
$$

• Statistics (continuous data):

▶ [KS test](https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test) H_0 : $X \sim F$ H₁ : $X \not\sim F$ with Kolmogorov-Smirnov (KS) statistic:

$$
D=\sup_{a\in\mathbb{R}}|F_n(a)-F(a)|\sim K
$$

▶ [LR test](https://en.wikipedia.org/wiki/Likelihood-ratio_test) H_0 : $X \sim F_1$ H₁ : $X \sim F_2$ with the likelihood-ratio test:

$$
\lambda_{LR} = \log \frac{L(F_1(\lambda_1))}{L(F_2(\lambda_2))} = \ell(F_1(\lambda_1)) - \ell(F_2(\lambda_2)) \quad \text{with} \quad -2\lambda_{LR} \sim \chi^2(1)
$$

Quality of fitting

- Statistics (discrete data):
	- ▶ [Pearson's Chi-Square test](https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test)

 $H_0: X \sim F$ and $H_1: X \not\sim F$ with χ^2 statistic:

$$
\chi^{2} = \sum_{N_{i}>0} \frac{(N_{i} - n_{i})^{2}}{n_{i}} = n \cdot \sum_{N_{i}>0} \frac{(N_{i}/n - p(i))^{2}}{p(i)} \sim \chi^{2}(df)
$$

where N_i number of observations of value i, $n_i = n \cdot p(i)$ expected number of observations (rescaled), and $df = |\{i | N_i > 0\}| - 1$ is the number of observed values minus 1. $\chi^2=\infty$ if for some $i\colon\thinspace n_i=0$

▶ [Yates's correction for continuity](https://en.wikipedia.org/wiki/Yates%27s_correction_for_continuity)

It corrects for approximating the discrete probability of observed frequencies by the continuous chi-squared distribution

$$
\chi^2 = \sum_{N_i>0} \frac{(|N_i - n_i| - 0.5)^2}{n_i}
$$

It increases Type II error, so do not use it!

Comparing two datasets

- Dataset x_1, \ldots, x_n realization of $X_1, \ldots, X_n \sim F$
- Dataset v_1, \ldots, v_m realization of $Y_1, \ldots, Y_m \sim G$
- $H_0 : F = G \quad H_1 : F \neq G$
	- \triangleright Useful to detect [covariate drift](https://en.wikipedia.org/wiki/Concept_drift) (data stability) from source to target datasets
- Univariate data:
	- ► Continuous data: KS statistics $D = \sup_{a \in \mathbb{R}} |F_n(a) G_m(a)| \sim K$
		- \Box KS-distance between empirical cumulative distributions
	- \blacktriangleright Discrete data: χ^2 statistics

$$
\chi^2 = \sum_{R_i > 0 \vee S_i > 0} \frac{(\sqrt{\frac{m}{n}} R_i - \sqrt{\frac{n}{m}} S_i)^2}{R_i + S_i} \sim \chi^2(df)
$$

where R_i (resp., S_i) is the number of observations in x_1, \ldots, x_n (resp., y_1, \ldots, y_m) which are equal to *i*, $df = |\{i \mid R_i > 0 \vee S_i > 0\}| - 1$

- \triangleright Other tests in the R package [twosamples](https://twosampletest.com/)
- Multivariate data: see classifier 2-sample test and others in the R package **[Ecume](https://rdrr.io/cran/Ecume)**

See R script $5/13$

Testing independence of discrete random variables

- [Pearson's Chi-Square test](https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test) of independence
- X and Y discrete (finite) distributions
- $(x_1, y_1) \ldots, (x_n, y_n)$ bivariate observed dataset
- $H_0: X \perp\!\!\!\perp Y$ $H_1: X \perp\!\!\!\perp Y$
- Test statistic:

$$
\chi^2 = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}} = n \sum_{i,j} \frac{(O_{i,j}/n - p_{i,j}, p_{i,j})^2}{p_{i,j}, p_{i,j}} \sim \chi^2(df)
$$

where $O_{i,j}$ is the number of observations of value $X=i$ and $Y=j,\;E_{i,j}=n$ p $_{i,\cdot}$, $p_{\cdot,j}$ where $p_{i,.}=\sum_jO_{i,j}/n$ and $p_{.,j}=\sum_iO_{i,j}/n.$ $df=(n_\times-1)(n_\text{y}-1)$ where n_\times (resp., $n_\text{y})$ is the size of the support of X (resp., Y)

- Exact test when *n* is small: [Fisher's exact test](https://en.wikipedia.org/wiki/Fisher%27s_exact_test)
- Paired data (e.g., before and after taking a drug): **[McNemar's test](https://en.wikipedia.org/wiki/McNemar%27s_test)**

The G-test and Mutual Information

- **[G-test](https://en.wikipedia.org/wiki/G-test)** of independence
- X and Y discrete (finite) distributions
- $(x_1, y_1) \ldots, (x_n, y_n)$ bivariate observed dataset
- $H_0: X \perp\!\!\!\perp Y$ $H_1: X \perp\!\!\!\perp Y$
- Test statistics:

$$
G = 2\sum_{i,j} O_{i,j} \log \frac{O_{i,j}}{E_{i,j}} = 2\sum_{i,j} O_{i,j} \log \frac{O_{i,j}}{np_{i,j}p_{\cdot,j}} \sim \chi^2(df)
$$

where $O_{i,j}$ is the number of observations of value $X=i$ and $Y=j,\;E_{i,j}=n$ p $_{i,\cdot}$ p $_{\cdot,j}$ where $p_{i,.}=\sum_jO_{i,j}/n$ and $p_{.,j}=\sum_iO_{i,j}/n.$ $df=(n_\times-1)(n_\text{y}-1)$ where n_\times (resp., $n_\text{y})$ is the size of the support of X (resp., Y)

- Preferrable to Chi-Squared when numbers $(O_{ii}$ or $E_{ii})$ are small, asymptotically equivalent
- $G = 2 \cdot n \cdot I(O, E)$ where $I(O, E)$ is the mutual information between O and E [See Lesson 11]

Other tests of independence (hints and references)

- $(x_1, y_1) \ldots, (x_n, y_n)$ bivariate observed dataset
- Permutation tests:
	- ▶ reduces to comparing two datasets: $(x_1, y_1) \ldots, (x_n, y_n)$ and $(x_1, y_{\pi_1}) \ldots, (x_n, y_{\pi_n})$, where π_1, \ldots, π_n is a permutation of $1, \ldots, n$ [see slide on comparing two datasets]
- Continuous X and Y .
	- \triangleright discretize both X and Y and then apply independence tests for discrete r.v.'s, or
	- \triangleright test correlation (see later), or
	- ▶ [Hoeffding's test](https://en.wikipedia.org/wiki/Hoeffding%27s_independence_test), see R package [independence](https://cran.r-project.org/web/packages/independence/index.html)
- Continuous X and discrete Y :
	- \triangleright discretize X and then apply independence tests for discrete r.v.'s, or
	- \triangleright a direct approach [Yang and Kim](https://koreascience.kr/article/JAKO202022762160255.pdf), or
	- ▶ special case Y binary: $X \perp \!\!\! \perp Y$ iff $P(X|Y) = P(X)$ iff $P(X|Y = 0) = P(X|Y = 1)$

[see slide on comparing two datasets]

Measures of association (from Lesson 16)

- Association: one variable provides information on the other
	- ▶ X $\perp\!\!\!\perp$ Y independent, i.e., $P(X|Y) = P(X)$: zero information
	- \blacktriangleright $Y = f(X)$ deterministic association with f invertible: maximum information
- Correlation: the two variables show an increasing/decreasing trend
	- ▶ $X \perp\!\!\!\perp Y$ implies $Cov(X, Y) = 0$
	- \triangleright the converse is not always true

 φ = phi coefficient, λ = Goodman and Kruskal's lambda,

 τ_{μ} = Kendall's τ_{μ} .

Association between nominal variables: Pearson χ^2 -based

- ϕ [coefficient](https://en.wikipedia.org/wiki/Phi_coefficient) (or MCC, Matthews correlation coefficient)
	- ▶ For 2×2 contingency tables:

$$
\phi=\sqrt{\frac{\chi^2}{n}}\in[0,1]
$$

- [Cramer's](https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V) V
	- \blacktriangleright For contingency tables larger than 2×2 :

$$
V = \sqrt{\frac{\chi^2}{n \cdot \min\left\{r-1, c-1\right\}}} \in [0, 1]
$$

where r and c are the number of rows and columns

- - \blacktriangleright For contingency tables larger than 2×2 :

$$
T=\sqrt{\frac{\chi^2}{n\cdot\sqrt{(r-1)(c-1)}}}\in[0,1]
$$

where r and r are the number of rows and columns

See R script $10 / 13$

• [Tschuprov's](https://en.wikipedia.org/wiki/Tschuprow%27s_T) \overline{I} sames as V if $r = c$]

Exercise. Show
$$
\phi = |r_{xy}|\}
$$

Testing correlation: continuous data

• Population correlation:

$$
\rho = \frac{E[(X - \mu_X) \cdot (Y - \mu_Y)]}{\sigma_X \cdot \sigma_Y}
$$

• Pearson's correlation coefficient:

$$
r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}}
$$

- Assumption: joint distribution of X, Y is bivariate normal (or large sample)
- (x_1, y_1) ..., (x_n, y_n) bivariate observed dataset
- $H_0: \rho = 0$ $H_1: \rho \neq 0$
- Test statistics:

$$
T=\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}\sim t(n-2)
$$

► Recall that $X \perp\!\!\!\perp Y$ implies $\rho = 0$: if H_0 can be rejected, then $X \perp\!\!\!\perp Y$ can be rejected

Testing AUC-ROC

- Binary classifier score $s_\theta(w) \in [0,1]$ where $s_\theta(w)$ estimate $\eta(w) = P_{\theta_{T \theta \cup E}}(C = 1|W = w)$
- ROC Curve
	- ▶ TPR(p) = $P(s_\theta(w) \ge p | C = 1)$ and $FPR(p) = P(s_\theta(w) | C = 0)$
	- ▶ ROC Curve is the scatter plot $TPR(p)$ over $FPR(p)$ for p ranging from 1 down to 0
	- ▶ AUC-ROC is the area below the curve What does AUC-ROC estimate?
	- ▶ Linearly related to Somer's D correlation index (a.k.a. Gini coefficient) [See Lesson 16]

Testing AUC-ROC

• AUC is the probability of correct identification of the order between two instances:

$$
\mathcal{AUC} = P_{\theta_{\mathit{TRUE}}}(s_{\theta}(W1) < s_{\theta}(W2) | C_{W1} = 0, C_{W2} = 1)
$$

where $(W1, C_{W1}) \sim f_{\theta_{TPIE}}$ and $(W2, C_{W2}) \sim f_{\theta_{TPIE}}$

• $s_{\theta}(W_1), \ldots, s_{\theta}(W_n) \sim F_{\theta_{TPIU}}|_{C=1}$ (scores of positives) and $s_{\theta}(V_1), \ldots, s_{\theta}(V_m) \sim F_{\theta_{TME}}|_{\theta(C=0)}$ (scores of negative)

$$
U = \sum_{i=1}^{n} \sum_{j=1}^{m} S(s_{\theta}(W_i), s_{\theta}(V_j))
$$

$$
S(X, Y) = \begin{cases} 1 & \text{if } X > Y \\ \frac{1}{2} & \text{if } X = Y \\ 0 & \text{if } X < Y \end{cases}
$$

- \triangleright AUC-ROC = $U/(n \cdot m)$ is an estimator of AUC
- U statistics of the **[Wilcoxon rank-sum test](https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test) Example 2014** [See Lesson 31]
	-
- Normal approximation, [DeLong's algorithm](https://glassboxmedicine.com/2020/02/04/comparing-aucs-of-machine-learning-models-with-delongs-test/), bootstrap, [Fligner-Policello](https://www.jstor.org/stable/2285771), [Brunner-Munzel](https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test#Different_distributions) tests and confidence intervals