Master Program in Data Science and Business Informatics Statistics for Data Science Lesson 32 - Multiple-sample tests of the mean and applications to classifier comparison

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

The multiple comparisons problem

- Single test H_0 : $\mu = 0$, with significance level $\alpha = 0.05$ [false positive rate]
	-

- \triangleright test is called *significant* when we reject H_0
- \triangleright α is Type I error, probability of rejecting H_0 when it is true
- Multiple tests, say $m = 20$
	- ► E.g., $H_0^i: \mu_i = 0$ for $i = 1, ..., m$ where μ_i is the [expectation of a subpopulation](https://xkcd.com/882/)
- \bullet What is the probability of rejecting **at least one** H_0^i when all of them are true?
	- ▶ For independent tests: $P(\cup_{i=1}^{m}\{p_i \leq \alpha\}) = 1 P(\cap_{i=1}^{m}\{p_i > \alpha\}) = 1 (1 \alpha)^m$ and then $1 - (0.95)^{20} \approx 0.64$
	- ▶ For dependent tests: $P(\cup_{i=1}^{m}\{p_i\leq \alpha\})\leq \sum_{i}P(\{p_i\leq \alpha\})=m\cdot\alpha$, and then $\leq 20\cdot 0.05=1$

Family-wise error rate (FWER)

The FWER is the probability of making at least one Type I error in a family of m tests. If the tests are independent:

$$
\alpha_{FWER} = 1 - (1 - \alpha)^m
$$

If the test are dependent: $\alpha_{FWFR} < m \cdot \alpha$

Multiple comparisons: corrections

Question: what should be α such that $\alpha_{FWER} \leq b$?

- Bonferroni correction (most conservative one):
	- **►** scale significance level $\alpha = b/m$ [invert b = m · α]
	- \blacktriangleright thus α $\epsilon \leq m \cdot \alpha = b$

Notice: $p \le \alpha$ is equivalent to scale p-values and test $p \cdot m \le b$

- Šidák correction (exact for independent tests):
	- ► scale significance level $\alpha = 1-(1-b)^{1/m}$ [invert $b = 1 - (1 - \alpha)^m$]
	- ► thus $\alpha_{FWER} = 1 (1 \alpha)^m = b$

Notice: $p \leq \alpha$ is equivalent to scale p-values and test $1-(1-p)^m \leq b$

False Discovery Rate and q-values

See R script

- False Positive Rate: $FPR = FP/(FP + TN)$
	- \blacktriangleright Corrections control for FPR since $FWER = P(FP > 0|H_0^i \; i = 1, \ldots, m)$
- Drawback: acting on α increases $FNR = FN/(FN + TP)$
- False Discovery Rate: $FDR = FP/(FP + TP)$ [Korthauer et al. 2019]
	- ▶ FDR = 0.05 means 5% of rejected H_0 's are actually true
- q[-value](https://en.wikipedia.org/wiki/Q-value_(statistics)) is $P(H_0|T > t)$ [vs. $p = P(T > t|H_0)$]
	- ▶ FDR can be controlled by requiring $q \leq$ threshold

Omnibus tests and post-hoc tests

- $H_0: \theta_1 = \theta_2 = \ldots = \theta_k$ [= 0]
- $\bullet\; H_1: \theta_i \neq \theta_j$ for some $i \neq j$
- Omnibus tests detect any of several possible differences
	- \triangleright Advantage: no need to pre-specify which treatments are to be compared and then no need to adjust for making multiple comparisons
- If H_0 is rejected (test significant), a post-hoc test to find which $\theta_i \neq \theta_i$
	- \triangleright Everything to everything post-hoc compare all pairs
	- \triangleright One to everything post-hoc compare a new population to all the others
- We distinguish a few cases:
	- ▶ Multiple linear regression (normal errors $+$ homogeneity of variances, i.e., $U_i \sim \mathcal{N}(0, \sigma^2)$): \Box F-test + t-test
	- \triangleright Equality of means (normal distributions $+$ homogeneity of variances):
		- \Box ANOVA + Tukey/Dunnett
	- \triangleright Equality of means (general distributions):
		- \Box Friedman + Nemenyi

F -test for multiple linear regression

- $Y = X \cdot \beta + U$, where $Y = (Y_1, \ldots, Y_n)$, $U = (U_1, \ldots, U_n)$, and $X = (x_1, \ldots, x_n)$
	- $\blacktriangleright \ \bm{\beta}^{\bm{\mathcal{T}}} = (\alpha, \beta_1, \ldots, \beta_k)$ and $\bm{x}_i = (1, x_i^1, \ldots, x_i^k)$
	- ▶ Unexplained (residual) error $SSE = S(\beta) = \sum_{i=1}^{n} (y_i x_i \cdot \beta)^2$
- Null model (or intercept-only model): $Y = 1 \cdot \alpha + U$
	- ▶ Total error $SST = S(\alpha) = \sum_{i=1}^{n} (y_i \bar{y}_n)^2$ [residuals of the null model]
- Explained error $SSR = SST SSE = \sum_{i=1}^{n} (\bar{y}_n x_i \cdot \beta)^2$
- Coefficient of determination $R^2 = SSR/SST = 1 SSE/SSI$ [See Lesson 20]
	- \triangleright Is the model useful? Fraction of explained error
- Is the model statistically significant? $\frac{1}{10}$ is a specific β_i significant? See Lesson 29]
- $H_0: \beta_1 = \ldots = \beta_k = 0$ $H_1: \beta_i \neq 0$ for some $i = 1, \ldots, k$
- Test statistic: $F = \frac{SSR}{SSF}$ SSE $\frac{n-k-1}{k} \sim F(k, n-k-1)$

See R script

Equality of means: ANOVA

-
- H_1 : $\mu_1 \neq \mu_2$ for some $i \neq i$
- datasets y_1^j $j_1^j,\ldots, j_{n_j}^j$ for $j=1,\ldots,k$
	- Assumption: normality (**[Shapiro-Wilk test](https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test)**) + homogeneity of variances (**[Bartlett test](https://en.wikipedia.org/wiki/Bartlett%27s_test)**)
	- **►** responses of $k 1$ treatments and 1 control group \blacksquare [one way ANOVA]
	- **Example 3** accuracies of k classifiers over $n_i = n$ datasets [repeated measures/two way ANOVA]
- Linear regression model over dummy encoded *i*:

$$
Y=\alpha+\beta_1x_1+\ldots+\beta_{k-1}x_{k-1}
$$

- $\triangleright \alpha = \mu_k$ is the mean of the reference group $(j = k)$
- \triangleright $\beta_i = \mu_i \mu_k$
- \triangleright in R: lm(Y∼Group) where Group contains the labels of $j = 1, ..., k$
- F-test (over linear regression): $H_0: \beta_1 = \ldots = \beta_k = 0$, i.e., $\mu_i = \mu_k$ for $j = 1, \ldots, k$
- [Tukey HSD](https://en.wikipedia.org/wiki/Tukey%27s_range_test) (Honest Significant Differences) is an all-pairs post-hoc test
- **[Dunnet test](https://en.wikipedia.org/wiki/Dunnett%27s_test)** is a one-to-everything test

See R script

• $H_0: \mu_1 = \mu_2 = \ldots = \mu_k$ [generalization of two sample t-test]

Non-parametric test of equality of means: Friedman

\n- \n
$$
H_0: \mu_1 = \mu_2 = \ldots = \mu_k
$$
\n
\n- \n $H_1: \mu_1 \neq \mu_2$ for some $i \neq j$ \n
\n- \n datasets x_1^j, \ldots, x_n^j for $j = 1, \ldots, k$ *[paired observations/repeated measures]*\n
\n- \n decreases of *k* classifiers over *n* datasets\n
\n- \n Let r_i^j be the rank of x_i^j in x_i^1, \ldots, x_i^k \n
\n- \n e.g., j^{th} classifier w.r.t. i^{th} dataset\n
\n- \n Average rank of classifier: $R_j = \frac{1}{n} \sum_{i=1}^n r_i^j$ \n
\n- \n Under H_0 , we have $R_1 = \ldots = R_k$ and, for *n* and *k* large:\n
\n- \n $x^2 = \frac{12n}{n} \left(\sum_{i=1}^k p_i^2 \right)^{k} \left(k + 1 \right)^2 \left(\sum_{i=1}^k p_i^2 / k \right)^2$ \n
\n

$$
\chi^2_F = \frac{12n}{k(k+1)} \left(\sum_{j=1}^k R_j^2 - \frac{k(k+1)^2}{4} \right) \sim \chi^2(k)
$$

- Nemenyi test is an all-pairs post-hoc test
- Bonferroni correction is a one-to-everything test
- For unpaired observations, use [Kruskal-Wallis test](https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance) instead of Friedman test

See R script

Chi-square distribution

Chi-square distribution

The Chi-square distribution with k degrees of freedom $\chi^2(k)$ has density:

$$
f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2 - 1} e^{-x/2}
$$

Let
$$
X_1, \ldots, X_k \sim \mathcal{N}(0, 1)
$$
. Then $Y = \sum_{i=1}^k X_i^2 \sim \chi^2(k)$

Comparing classifiers: Summary

[The SCMAMP package in R](https://github.com/b0rxa/scmamp)

[The AutoRank package in Python](https://github.com/sherbold/autorank) $10/12$

Common distributions

- [Probability distributions at Wikipedia](https://en.wikipedia.org/wiki/List_of_probability_distributions)
- [Probability distributions in R](https://CRAN.R-project.org/view=Distributions)
- **F** C. Forbes, M. Evans, N. Hastings, B. Peacock (2010) Statistical Distributions, 4th Edition **Wiley**

Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).

- On confidence intervals and statistical tests (with R code)
- 晶 Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014) Nonparametric Statistical Methods. 3rd edition, John Wiley & Sons, Inc.
	- On False Discovery Rate
- Ħ Keegan Korthauer, Patrick K. Kimes, Claire Duvallet, Alejandro Reyes, Ayshwarya Subramanian, Mingxiang Teng, Chinmay Shukla, Eric J. Alm, and Stephanie C. Hicks (2019) [A practical guide to methods controlling false discoveries in computational biology](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1716-1). Genome Biology 20, article 118