#### Master Program in Data Science and Business Informatics

#### Statistics for Data Science

Lesson 32 - Multiple-sample tests of the mean and applications to classifier comparison

#### Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

### The multiple comparisons problem

• Single test  $H_0$ :  $\mu=0$ , with significance level  $\alpha=0.05$ 

[false positive rate]

- ▶ test is called *significant* when we reject  $H_0$
- $ightharpoonup \alpha$  is Type I error, probability of rejecting  $H_0$  when it is true
- Multiple tests, say m = 20
  - ▶ E.g.,  $H_0^i: \mu_i = 0$  for i = 1, ..., m where  $\mu_i$  is the **expectation of a subpopulation**
- What is the probability of rejecting at least one  $H_0^i$  when all of them are true?
  - ▶ For independent tests:  $P(\bigcup_{i=1}^{m} \{p_i \leq \alpha\}) = 1 P(\bigcap_{i=1}^{m} \{p_i > \alpha\}) = 1 (1 \alpha)^m$  and then  $1 (0.95)^{20} \approx 0.64$
  - ▶ For dependent tests:  $P(\bigcup_{i=1}^m \{p_i \leq \alpha\}) \leq \sum_i P(\{p_i \leq \alpha\}) = m \cdot \alpha$ , and then  $\leq 20 \cdot 0.05 = 1$

#### Family-wise error rate (FWER)

The FWER is the probability of making at least one Type I error in a family of m tests. If the tests are independent:

$$\alpha_{FWER} = 1 - (1 - \alpha)^m$$

If the test are dependent:  $\alpha_{FWER} \leq m \cdot \alpha$ 

#### Multiple comparisons: corrections

#### Question: what should be $\alpha$ such that $\alpha_{FWER} \leq b$ ?

- Bonferroni correction (most conservative one):
  - scale significance level  $\alpha = b/m$

[invert 
$$b = m \cdot \alpha$$
]

▶ thus  $\alpha_{FWER} \leq m \cdot \alpha = b$ 

Notice:  $p \le \alpha$  is equivalent to scale p-values and test  $p \cdot m \le b$ 

- Šidák correction (exact for independent tests):
  - scale significance level  $\alpha = 1 (1 b)^{1/m}$

[invert 
$$b = 1 - (1 - \alpha)^m$$
]

• thus  $\alpha_{FWER} = 1 - (1 - \alpha)^m = b$ 

Notice:  $p \le \alpha$  is equivalent to scale p-values and test  $1 - (1 - p)^m \le b$ 

# False Discovery Rate and q-values

|                                       |                  | True state of nature |                |
|---------------------------------------|------------------|----------------------|----------------|
|                                       |                  | $H_0$ is true        | $H_1$ is true  |
| Our decision on the basis of the data | Reject $H_0$     | False Positive       | True Positive  |
|                                       | Not reject $H_0$ | True Negative        | False Negative |

- False Positive Rate: FPR = FP/(FP + TN)
  - ▶ Corrections control for *FPR* since  $FWER = P(FP > 0|H_0^i \ i = 1,...,m)$
- Drawback: acting on  $\alpha$  increases FNR = FN/(FN + TP)
- False Discovery Rate: FDR = FP/(FP + TP)

► FDR = 0.05 means 5% of rejected  $H_0$ 's are actually true

- *q*-value is  $P(H_0|T \ge t)$ 
  - ▶ FDR can be controlled by requiring  $q \le threshold$

[vs.  $p = P(T \ge t|H_0)$ ]

[Korthauer et al. 2019]

See R script

## Omnibus tests and post-hoc tests

- $H_0: \theta_1 = \theta_2 = \ldots = \theta_k \ [= 0]$
- $H_1: \theta_i \neq \theta_j$  for some  $i \neq j$
- Omnibus tests detect any of several possible differences
  - ► Advantage: no need to pre-specify which treatments are to be compared ... ... and then no need to adjust for making multiple comparisons
- If  $H_0$  is rejected (test significant), a post-hoc test to find which  $\theta_i \neq \theta_j$ 
  - ► Everything to everything post-hoc compare all pairs
  - ▶ One to everything post-hoc compare a new population to all the others
- We distinguish a few cases:
  - ▶ Multiple linear regression (normal errors + homogeneity of variances, i.e.,  $U_i \sim \mathcal{N}(0, \sigma^2)$ ):
    - $\Box$  *F*-test + t-test
  - ► Equality of means (normal distributions + homogeneity of variances):
    - $\square$  ANOVA + Tukey/Dunnett
  - ► Equality of means (general distributions):
    - $\Box$  Friedman + Nemenyi

## *F*-test for multiple linear regression

- $\boldsymbol{Y} = \boldsymbol{X} \cdot \boldsymbol{\beta} + \boldsymbol{U}$ , where  $\boldsymbol{Y} = (Y_1, \dots, Y_n)$ ,  $\boldsymbol{U} = (U_1, \dots, U_n)$ , and  $\boldsymbol{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$ 
  - $\boldsymbol{\beta}^T = (\alpha, \beta_1, \dots, \beta_k) \text{ and } \boldsymbol{x}_i = (1, x_i^1, \dots, x_i^k)$
  - ▶ Unexplained (residual) error  $SSE = S(\beta) = \sum_{i=1}^{n} (y_i x_i \cdot \beta)^2$
- Null model (or intercept-only model):  $\mathbf{Y} = \mathbf{1} \cdot \alpha + \mathbf{U}$ 
  - ► Total error  $SST = S(\alpha) = \sum_{i=1}^{n} (y_i \bar{y}_n)^2$

[residuals of the null model]

- Explained error  $SSR = SST SSE = \sum_{i=1}^{n} (\bar{y}_n x_i \cdot \beta)^2$
- Coefficient of determination  $R^2 = SSR/SST = 1 SSE/SST$

[See Lesson 20]

- Is the model useful? Fraction of explained error
- Is the model statistically significant? [vs a specific  $\beta_i$  significant? See Lesson 29]
- $H_0: \beta_1 = \ldots = \beta_k = 0$   $H_1: \beta_i \neq 0$  for some  $i = 1, \ldots, k$
- Test statistic:  $F = \frac{SSR}{SSE} \frac{n-k-1}{k} \sim F(k, n-k-1)$

See R script

## Equality of means: ANOVA

•  $H_0: \mu_1 = \mu_2 = \ldots = \mu_k$ 

[generalization of two sample t-test]

- $H_1: \mu_1 \neq \mu_2$  for some  $i \neq j$
- datasets  $y_1^j, \ldots, y_{n_j}^j$  for  $j = 1, \ldots, k$ 
  - ► Assumption: normality (Shapiro-Wilk test) + homogeneity of variances (Bartlett test)
  - responses of k-1 treatments and 1 control group [one way ANOVA]
  - ightharpoonup accuracies of k classifiers over  $n_j = n$  datasets [repeated measures/two way ANOVA]
- Linear regression model over dummy encoded j:

$$Y = \alpha + \beta_1 x_1 + \ldots + \beta_{k-1} x_{k-1}$$

- $\alpha = \mu_k$  is the mean of the reference group (j = k)
- $\beta_j = \mu_j \mu_k$
- ▶ in R:  $lm(Y \sim Group)$  where Group contains the labels of j = 1, ..., k
- F-test (over linear regression):  $H_0: \beta_1 = \ldots = \beta_k = 0$ , i.e.,  $\mu_j = \mu_k$  for  $j = 1, \ldots, k$
- Tukey HSD (Honest Significant Differences) is an all-pairs post-hoc test
- Dunnet test is a one-to-everything test

See R script

## Non-parametric test of equality of means: Friedman

- $H_0: \mu_1 = \mu_2 = \ldots = \mu_k$
- $H_1: \mu_1 \neq \mu_2$  for some  $i \neq j$
- datasets  $x_1^j, \ldots, x_n^j$  for  $j = 1, \ldots, k$ 
  - ► accuracies of *k* classifiers over *n* datasets
- Let  $r_i^j$  be the rank of  $x_i^j$  in  $x_i^1, \ldots, x_i^k$ 
  - ▶ e.g.,  $j^{th}$  classifier w.r.t.  $i^{th}$  dataset
- Average rank of classifier:  $R_j = \frac{1}{n} \sum_{i=1}^n r_i^j$
- Under  $H_0$ , we have  $R_1 = \ldots = R_k$  and, for n and k large:

$$\chi_F^2 = \frac{12n}{k(k+1)} \left( \sum_{j=1}^k R_j^2 - \frac{k(k+1)^2}{4} \right) \sim \chi^2(k)$$

- Nemenyi test is an all-pairs post-hoc test
- Bonferroni correction is a one-to-everything test
- For unpaired observations, use Kruskal-Wallis test instead of Friedman test

See R script

[paired observations/repeated measures]

# Chi-square distribution

#### Chi-square distribution

The Chi-square distribution with k degrees of freedom  $\chi^2(k)$  has density:

$$f(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2}$$

Let 
$$X_1, \ldots, X_k \sim \mathcal{N}(0,1)$$
. Then  $Y = \sum_{i=1}^k X_i^2 \sim \chi^2(k)$ 



# Comparing classifiers: Summary



#### The SCMAMP package in R



The AutoRank package in Python

#### Common distributions

- Probability distributions at Wikipedia
- Probability distributions in R
- C. Forbes, M. Evans,
  N. Hastings, B. Peacock (2010)
  Statistical Distributions, 4th Edition
  Wiley



Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986). 11 / 12

#### Optional reference

• On confidence intervals and statistical tests (with R code)



Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014)

Nonparametric Statistical Methods.

3rd edition, John Wiley & Sons, Inc.

On False Discovery Rate



Keegan Korthauer, Patrick K. Kimes, Claire Duvallet, Alejandro Reyes, Ayshwarya Subramanian, Mingxiang Teng, Chinmay Shukla, Eric J. Alm, and Stephanie C. Hicks (2019)

A practical guide to methods controlling false discoveries in computational biology.

Genome Biology 20, article 118