Programming for Data Science (31/10/2023)

0% of the points are assigned to quality of documentation and/or comments to solutions.
Solutions must include tests of executions of the developed functions.

Name files as “<your matricola>_<firstname>_<lastname>_ex1.py” for Exercise 1, and “<your
matricola>_<firstname>_<lastname>_ex2.c” for the second exercise.
Upload the TWO files in a folder
(named with your student number and your last name) at the following URL: Upload here
(access GDrive using your university credentials)

Exercise 1. (Math, on paper)

Consider the following sets:

R={peZ| -100< p <100}

A= {m € R | mis a multiple of 5}

B={ne Z|n<100}
S
1

a) Which is the cardinality of the sets: AnB;: BN C: AnBnC?
b) List the elements of the set: D= {(xz.y) € (ANB)x (BNC) |2y <0}
c) Let's consider the function f: C— Z such that f(c) = ¢ + 1 for every ¢ in C. Determine if this

function is injective, surjective, or bijective.

Soluzione
AnB BnC D
-5 2 (-5,2)
0 -8 (-0,2)
5 (0,-8)

(SI_S)
|A~B| =3 |IBAC| =2

|AnBC| =0

c) f is injective since f(m)=f(n) implies m+1=n+1 that implies m=n, not surjective since not all Z is image of
f, and hence f is not bijective since it is not (injective and surjective).

Exercise 2. (Python)

Implement the Exercise 1 in Python, according with the definition given in the previous exercise:
1. Define the three sets A, Band C

2. Create the new set D made up of all tuples (x,y), with x € (A N B) and y € (B N C), such that
x*y<=0

3. Create a function product(s, n), taking a set s of tuples (x,y) and a number n in input, and producing
in output a new set resulting from the multiplication of x, y and n. Test this function on the D set
and a number n to be read from the user (only once, before the invocation of the function).

Solution:
def compute D(A, B, C):
inter ab = A.intersection (B)

inter bc = B.intersection(C)

D =[]
for a in inter ab:
for b in inter bc:
if a * b <= 0:
D.append((a,b))
return D
def product(s, n):
r = set ()
for item in s:
r.add(item[0] * item[1l] * n)

return r

R = set()
for i in range(-100, 100):

R.add (1)

A = set ()
for i in R:
if i % 5 ==

A.add (1)

B = set()
for i in range (-10, 10):
if i**2 < 100:

B.add (1)

C = set ()
for i in A:

C.add(2 * i + 2)

print ("A: {}".format (A))
print ("B: {}".format (B))

print("C: {}".format (C))

D = compute D(A, B, C)

print ("D: {}".format (D))

n = int (input ("Insert a number: "))
r = product(D, n)

print ("resulting set =", 1)

Exercise 3. (C)

Write a C program that performs basic string manipulation on a user-entered string. The program should
provide the implementation for each of the following operations:

1. Calculate the length of the string (without termination character \0)

2. Reverse the string.

3. Convert the string to uppercase.

4. Check if the string is a palindrome (reads the same forwards and backward).
Prompt the user to input a string and then display the result of each operation. The aforementioned
operations should be implemented without exploiting the ¢ string functions.

Solution:

#include <stdio.h>
#include <math.h>
#finclude <stdlib.h>
#include <stdbool.h>

int length string(char* str)

int count = 0;

while (str[count] != '"\0")

count++;

return count;

char* reverse string(char* str, int lun) {
malloc (lun * sizeof (char));

char* new _str = (char *)

for (int i=0; i<lun; i++)

= str[lun-i-17];

new str[i]

new str[lun] = '\0';

return new_str;

char* uppercase string(char* str, int lun) {
malloc (lun * sizeof (char));

char* new _str = (char *)

for (int i=0; i<=lun; i++) {

if (str([i] >= 'a' && str[i] <=

new _str([i] = str[i] -

else

new str[i] = str([i];

return new_str;

bool check palindrome (char* str, int lun) {

for (int 1i=0; i<=ceil (lun/2); i++) {
if (str([i] != str[lun-i-11)

return false;

return true;

int main() {

char* str = (char *) malloc (100 * sizeof(char)):;

int length;

char* reversed, *uppercase;

printf ("Insert a string:");

scanf ("%$s", str);

length = length string(str);

printf ("The length of the string is: %d\n", length);

reversed = reverse string(str, length);

printf ("The reversed string is: %$s\n", reversed);

uppercase = uppercase_string(str, length);

printf ("The uppercase string is: %$s\n'", uppercase);

printf ("The string is palindrome: %d\n", check palindrome (str, length));

