
Programming for Data Science (04/09/2023)

Name files as “<your matricola>_<firstname>_<lastname>_ex2.py” for Exercise 2, and “<your
matricola>_<firstname>_<lastname>_ex3.c” for the third exercise.

Upload the TWO files in a folder
(named with your student number and your last name) at the following URL: Upload here

(access GDrive using your university credentials)

Exercise 1. (Math, on paper)

Let A be a 3x3 upper triangular matrix, i.e. all the entries below the main
diagonal are zero:

1) Write a logical formula of the kind ….. telling that a square matrix is upper triangular.∀𝑖, 𝑗.
2) The sum of two upper triangular matrices is always: (provide an explanation)

a) Upper triangular
b) Lower triangular
c) Diagonal
d) Symmetric
e) None of them

3) The product of two upper triangular matrices is always: (provide an explanation)
a) Upper triangular
b) Lower triangular
c) Diagonal
d) Symmetric
e) None of them

4) What is the determinant of A? Show how you computed
5) Which are the eigenvalues of A? Show how you computed

Exercise 2. (Python) Define the following Python functions

1) is_upper_triangular(matrix) that takes a square matrix as input and returns True if the
matrix is upper triangular, and False otherwise

2) det_if_triangular(matrix) that takes a square matrix and, if it is upper triangular returns
its determinant

3) tra_if_triangular(matrix) that takes a square matrix and, if it is upper triangular returns
its transpose (without using the Python primitives for transpose)

4) Write a Python function solve_upper_triangular_system(matrix, vector) that takes
an upper triangular matrix and a vector as input, and solves the system of linear equations using
back-substitution.
Hint: Begin by solving for the last variable in the system (by multiplying the last row of the matrix
and the vector). Substitute the value of the solved variable back into the second-to-last equation.
Continue this process …

https://drive.google.com/drive/folders/1DsyGRqdsEBpCvyprGoQIK9TgF5qZO6f9

Exercise 3. (C) Write a C program that implements a linked list using dynamic memory allocation. In
particular:

1) Create a struct Node to represent a single node in the linked list. Each node should have an
integer data field and a pointer to the next node.

2) Create a struct LinkedList to represent the linked list itself. The struct should have a pointer to
the head node (the first node in the list).

Then implement the following operations for the linked list:

1) insertFront(LinkedList* list, int data): Insert a new node with the given data at
the front of the list.

2) insertEnd(LinkedList* list, int data): Insert a new node with the given data at the
end of the list.

3) delete(LinkedList* list, int data): Delete the first occurrence of a node with the
given data from the list.

4) display(LinkedList* list): Display the elements of the linked list from the head to the
end.

Finally, write a main function to test the linked list operations. Create a linked list, insert some elements,
delete elements, and display the list after each operation to verify the correctness of your implementation.

