Probability distributions Part 3

Normal distribution

The Normal Distribution, also known as Gaussian Distribution, plays a very important role in natural and social sciences.

Modelling a certain phenomenon with a Normal distribution means assuming this hypothesis:

There is a "true" or "normal" value for this phenomenon, driven by the main factor, the "cause".

But real events are affected by others factors, each one introducing a noise, which makes the observed value different from the "normal" expected value.

These noise sources are assumed having these features:

- There are a lot of noise factors.
- No one dominates the others.
- Each one varies random around 0 with no precise tendency.

The "normal" value is commonly denoted with the greek letter μ . It is the *expected value*, the rigorous formulation of the concept of *mean*. The expected value μ is the "most likely to be observed" value. The closer a value is to μ , the more likely to be observed it is. The *variance* of the distribution is denoted with σ^2 .

Mean and variance are the two parameters which completely describe a normal distribution.

Given μ and σ^2 , we can know how much likely it is to observe a realization of the phenomenon modelled with the distribution falling inside a certain range.

For example, we know that in the 95.44% of cases, the observation will be in the range from μ - 2 σ to μ + 2 σ .

Note we are using σ , the *standard deviation*, which is the square root of the variance.

