Multi-armed bandits
Part 3



Expected value

Expected value 1s a central concept in statistics and decision theory.

Let us toss a coin. We assume i1t 1s fair, 1.e.
prob(Head) = prob(Tail) = 0.5
If we get Head, we receive 1€, while Tail i1s worth O€.

The expected value of a single round of this game is worth
prob(Head) X value(Head) + prob(Tail) X value(Tail)
= 0.5 X 1.00€ + 0.5 X 0.00€ = 0.50€

perfectly according to intuition.
On the average, we will get 0.50€ per round.

[Note: the expected value formula is the same of probability of
observation, the denominator in Bayes' formula. Indeed, they are the same
concept]



In general, we get a decision d, say betting on a coin tossing:
« we have n possible outcomes a,, ..., a,,

 each one with its own probability to happen p(a;)

* and its own value, if happening, v(a,)

The expected value of this decision 1s

EV(d) = ) plav(a)
i=1

If we have two possible decisions d/ and d2, we will choose the one with
the greatest expected value. The same if we have many decisions to
choose among.

Expected value 1s the average value of possible outcomes, each one
weighted with its probability.



Expected value of impressions

Until now, we assumed each advertisement in a MAB problem was
remunerated with 1€ per click.

So, maximizing revenue and maximizing clicks number were the same
thing.

Given that the number of impressions was independent on our choices,
our problem was to maximize the CTR, the clickthrough rate.

Now we cope a more complex formulation of our problem:

Given a number of impression T, a set of advertisements a,, ..., a, and a
their monetary values vy, ..., v,, design a policy for selecting an ad at each
round form 1 to T in order to maximize the overall expected revenue.

The word expected underlines the probabilistic nature of our problem.



We apply the concept of expected value.

For each ad a; we estimate its probability to be clicked, 1.e. its expected
CTR.

Estimating (or forecasting, it is the same) an ad's CTR 1s the problem we
coped with using Naive Bayes and Logistic Regression.

Assuming we are able to solve this problem in a reliable way, we compute

a weighted average of ads' values, where the weights are the estimated
CTRs.

The expected value of the decision to deliver a certain ad in this round, let
us call it shortly the expected revenue of an ad, 1s

EV(a,) = Z p(a)v(a;)
i=1

We use the same MAB theory we already know, this time using the
expected revenue instead of the expected clickthrough rate.



Revenue | Imps | Clicks | Forecasted | Expected
per click CTR value

1.00€ 0.05 0.05€
B 2.00€ 200 6 0.03 0.06€
C 3.00€6 300 3 0.01 0.03€

The forecasted CTR is computed in a simplistic way, simply taking the
observed CTR. It is enough for the example, remember we can do better.

The "best" ad is B, though it does not have nether the best price nor the
best CTR.

We can review the MAB policies taking the expected value as the
criterion instead of the CTR.



Revenue | Imps | Clicks | Forecasted | Expected
per click CTR value

1.00€
B 2.00e 200 6
C 3.00€6 300 3

0.05 0.05€
0.03 0.06€
0.01 0.03€

_ Score isthe CTR Score is the EV

Epsilon-Greedy In the greedy phase,
select the max CTR
Softmax Inexp(Q/T) the

quality Q is the CTR

For each ad, sample x
from Beta(trials, hits)
and select

max X

Thompson Sampling

In the greedy phase,
select the max EV

Inexp(Q /T) the
quality Q is the EV

For each ad, sample x
from Beta(trials, hits)
and select

max (X * Revenue)



Expected conversion rate

Until now, we were interested in clicks.
Now, we consider conversions.

When the user clicks on an advertisement, he/she jumps on the advertiser's
site. There, she can purchase something, download a content, leave her
personal data or do any other useful action (useful for the advertiser).

A conversion happened.

A click is only a particular form of conversion. The most interesting form
Is sales.

The treatment of conversions is similar to the treatment of clicks in many
respects, but some important differences hold.



-

5%  20% 1%
B 200 6 2 3% 33% 1%
C 300 3 2 1% 66%  0.66%

CTR = clicks / impressions

CCR = conversions / clicks (click conversion rate)

CVR = conversions / impressions (impression conversion rate)
The terminology is a bit confused.

We can estimate CVR with the same methods already seen, or we can
separately estimate CCR and CVR then multiply them.

In the example, the outcome is the same because estimate are
simplistically observed quantities.

If we use estimation moving information through cells then the two
methods are different.

In general, decomposing CVR = CTR x CCR is preferable.



-

5%  20% 1%
B 200 6 2 3% 33% 1%
C 300 3 2 1% 66%  0.66%

Conversions are in general rare events.

It is likely to have CTR 1% and CCR 1% again, which means CVR 0.01%
I.e. one conversion per 10,000 impressions.

This require attention in the statistical treatment.

Simple methods can be sustainable when estimating or forecasting CTR,
but seldom when applied to CVR.

CVR requires methods like Naive Bayes or Logistic Regression.

The need to "fill more data" in cells is much more serious when treating
conversions.

10



Expected conversion value

Conversions are very different from clicks when they have an associated
monetary value which is not fixed in advance.

In that case, we cope an additional problem: forecasting conversion
values.

In e-commerce, once the user has clicked on our advertisement and
reached our site, he can buy or not. If buying, he can spend any amount of
money, maybe 10€ maybe 1000€.

Forecasting the value of sales is very different then estimating CTR or
CVR.

The point is that sales get continuous values, not only binary ones.
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In order to compute the expected value of impressions, we now have to
predict the worth of a conversion:

How much money can we expect this user will spend on our site, once
he/she has clicked and entered the site?

If we are able to predict
v; = expected value of conversion of this user on the site of advertiser |

p; = probability of click on a; (i.e. CTR of a))
Then we can compute
Expected value of selecting a; = EV(a;) = p; X v;

This is what we need in order to apply MAB algorithms.
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