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Multi-armed bandits 
Part 1 
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The basic problem 

We have a collection of K advertisements we can visualize 
inside our web site page. 
Each time  a new user enters the page, we select an ad and 
show it. Each visualization is named an impression. 
We hope the user gives us a click on the ad. Indeed, 
advertisers pay us €1 per click. 
We can have T impressions (the letter T suggests time). 
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Our goal is to maximize clicks. 
If we could know which ad has the greatest probability to be 
clicked, we could select it at each round. 
But we do not know these probabilities. Indeed, finding the 
max probability is the core of this problem. 
We want to define a policy, i.e. a criterion to select an ad at 
each round. 
We will implement the policy as a program, which will 
manage the task without any help while running. 
So, we have to anticipate different scenarios which can 
happen during the game. 
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First naïve attempt 

Let N = 100 rounds and K = 2 ads, be them A and B. 
We define this policy: 
Try A and B alternatively until one gets a click. 
Afterwards, select forever the same ad. 
(Forever means until the end of the game) 
As soon as an ad surpasses the other, we declare it as winner. 
We assess it as the best, so it is rational to visualize it instead 
of the other. 
Why is this policy too raw? 
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Example: 
 
 
 
Why is it not reasonable to assign all remaining 94 
impressions to ad A? 
It is a premature decision. We are not confident enough to 
decide that A is the best one. Maybe it was simply luckier 
than B over the first 3 rounds. 
We need more evidence. 
How much evidence? 

A B 
Clicks Impressions Clicks Impressions 

1 3 0 3 
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We define a refined policy: 
Try A and B for N times each one. 
The winner is the ad which get more clicks. 
Afterwards, select forever the winner. 
 
It sounds better than the first attempt. 
We have a first phase of exploration, then a second phase of 
exploitation. 
This algorithm has a parameter i.e. N. The policy designer 
has to choose a number. This is really a difficult task. 
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A small N (little exploration, large exploitation) risks making 
a premature decision. 
A large N gives us larger chance to choose the "true" winner, 
i.e. the ad which has really the maximum success rate. 
Yet, we do not only want to find the best ad, we want to find 
it as soon as possible. 
If we choose 49 as the value for the parameter N, in practice 
we use this algorithm: 
Try A and B for the same number of times. 
Not very smart, indeed. 
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We have to balance exploration and exploitation. 
This exp-exp dilemma is well-know since many decades and 
is extremely challenging in its most complex forms. 
Exploration implies sustaining cost because of choosing an 
ad which is not the best one. This has to be intended as a 
risky but necessary investment in knowledge acquisition. 
A critical point is that the right value for N depends of the 
nature of ads A and B. If one is much better than the other, a 
short exploration is enough to understand it is and we can 
quickly move to exploitation mode, gaining more clicks. 
Otherwise, we need more exploration … but the cost of 
exploration is not very high, because the ad have similar 
performance. 
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The problem is so messy that we simply give up with the 
attempt of choosing the right exploration rate in advance. 
Instead, we design an adaptive policy: at round t the ad to 
show will be selected depending of the history of the whole 
game up to round t – 1. 
Let us try with the simplest adaptive strategy: 
GREEDY Policy 
Try each ad once. 
Afterwards, try the ad best performing up to now. 
Ties are solved random. 
 

GREEDY policy 
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From the third round on, we compare performances of A and 
B and select the best until now. 
 
 
 
In this state, at round 15 we choose B because 1/4 > 2/10. 
If the user does not click, the comparison becomes 1/5 vs 
2/10. It is a tie, at round 16 we select random. If we select B 
and it fails again, the balance is 1/6 vs 2/10, A wins and is 
selected at round 17. 
 

A B 
Clicks Impressions Clicks Impressions 

2 10 1 4 
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Reasonable, but still not satisfactory. 
In this state 
 
 
 
we select A and from now on we will select it forever. 
Even if A fails at each round, its success rate will decrease but 
never reaching zero. The rate of B equals zero, so 

Rate(A) > rate(B) forever 
Not very fair! Clearly, B is worth a new chance. 

A B 
Clicks Impressions Clicks Impressions 

1 1 0 1 
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We could extend the initial exploration phase 
GREEDY Policy with initial exploration: 
Try each ad N times. 
Afterwards, try the ad best performing up to now. 
Yet, we again face the problem of choosing the right 
investment in exploration. To be fair, the problem is lighter 
than with the first naïve algorithm, because now the second 
phase allows a certain degree of exploration. Though, we feel 
something better must be possible. 
Intuition: mixing exploration and exploitation phases using 
data from the process itself. 
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This idea let us introduce the classic 
EPSILON-GREEDY Policy: 
Choose a value for parameter ε (epsilon). 
Try each ad once. 
Afterwards, try the ad best performing up to now with 
probability 1 - ε (epsilon) or a random chosen ad with 
probability ε. 
 
This policy is really a random mix of two policies, i.e. 
GREEDY and 
RANDOM Policy: 
At each round select an ad random. 

EPSILON-GREEDY policy 
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EPSILON-GREEDY minimizes the initial exploration, then 
alternates exploitation and exploration. 
 
 
 
Let ε = 0.1, i.e. the exploration rate we chose is 10%. 
The leader B is selected with probability 95% = 90% + 5%, A 
with probability 5%. 
With K = 4 ads, probabilities would be 92.5% for the leader, 
2.5% for each follower. 
 
 

A B 
Clicks Impressions Clicks Impressions 

2 10 1 4 
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This policy is simple, too simple one ould say. 
Indeed, it is difficult to demonstrate useful properties of this 
algorithm. Theory of EPSILON-GREEDY does not give very 
interesting guidelines. 
The great problem is tuning the parameter ε. 
Why did we choose 10% exploration rate instead of 1% or 
5%? In practice, the designer tries a value like this and waits. 
After hours, days or months, he/she can decide to try another 
way. 
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Despite its evident limits, for many years this policy was 
implemented in a lot of real systems. 
It is very simple to implement and often performs more or 
less as well as more complex algorithms. 
Only recently policy designers have acquired tools clearly 
better then EPSILON-GREEDY. Get familiar with this policy 
if you aim at developing algorithms for optimizing online 
advertising campaigns: it could turn out as a useful quick-
and-dirty solution for some problems. 
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EPSILON-GREEDY Policy: 
Read a value for parameter ε. 
// For each ad, initialize the history 
for i = 1, ..., K 
    clicks(adi) = imps(adi) = 0 
 
// Show each ad once, record what happened 
for t = 1, ..., K 
    show adt 

    imps(adt) += 1 
    if the user clicked then clicks(adt) += 1 
    ctr(adt) = clicks(adt) / imps(adt) 

 

EPSILON-GREEDY implementation 
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// For each round after, 
// decide whether to apply Greedy or Random policy 
For t = K + 1 ... T 
    If (r > ε) 
        x = i that maximizes ctr(adi) (solve ties random) 
    else 
        x = a random number in the range 1 .. K 
// Show the selected ad, record what happened 
    show adx 
    imps(adx) += 1 
    if the user clicked then clicks(adx) += 1 
    ctr(adx) = clicks(adx) / imps(adx) 

// ctr stays for click through rate, the usual name for the ratio 
// clicks / impressions 
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This policy can perform well if well-tuned, i.e. if ε has 
assigned a “good” value. Yet, it can as well perform very 
badly. 
Tuning the parameter is difficult and depends of what 
happens during the game. The parameter ε adaptively tunes 
the exploration rate, but requires adaptive tuning for itself. 
The problem raises again, even though in a better version. 
 
The tuning of ε can be achieved in a wide range of ways. 
The most common is to define a scheduling, i.e. a policy 
which assigns ε a value depending of time (round number). 
Usually, those values decrease with time. 

Adaptive EPSILON-GREEDY 
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Examples of decreasing scheduling can be: 
ε(t) = 1 / t  
ε(t) = 1 / square root of t  
ε(t) = 1 / logarithm of t 
 
The idea is that theexploration rate must be reduce for two 
reasons: 
1.With more time (rounds) past, we know more. 
2.With less time in the future, we have less opportunity to 
exploit the accumulated knowledge. 
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A possible improvement could be linking the value of ε not 
only to time but also to uncertainty: 
ε(t, u) decreasing in t, increasing in u  
something like ε(t, u) = u / t 
could work, if we can give a suitable definition of 
uncertainty. 
Intuitively, uncertainty is greater if 
•The leader ad has only a small edge on the second, third ... 
competitors. We are not much confident teh leader is really 
the best. 
•Ads are maybe changing their “true” success rates (do not 
confuse them with observed ctr!) 
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A very interesting approach is to have EPSILON-GREEDY 
to tune the parameter of EPSILON-GREEDY. 
We select a set of possible values for ε, e.g. {0.05, 0.10, 0.15} 
A meta-ε parameter is used to rule the competition among 
those values. 
At each step, we select a value for ε and apply EPSILON-
GREEDY with that parameter. Not only do we remember the 
impression and the (possible) click for selected ad but also for 
the selected ε value. 
So doing, the meta parameter tune the exploration rate for 
finding the best parameter, while parameters do the same for 
ads. Of course, we still have a parameter to tune, but the 
overall performance is less sensitive to our choice.  

Meta-level EPSILON-GREEDY 
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Usually, we have more than one slot in your web page where 
you can show an ad. 
If we want to show k < K ads, we can simply apply Epsilon-
Greedy k times. 
We select the first winner as above. 
Then we execute Epsilon-Greedy on K – 1 ads, excluding the 
previous winner. So we get a second winner. 
We repeat until we have k ads selected. 
 

Multiple winner EPSILON-GREEDY 
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Often, we cannot select one winner ad each time it required. 
Simply, user arrivals on our site are so many (thousands per 
second) that we have not enough time to make the selection 
and show the selected ads on the page. 
So, a round is intended as an interval of time during which 
many decisions will be to be made using the same policy and 
data. 
During a round, we cannot update data, so the 1,000th ad will 
be selected without learning from the 999 previous decisions. 
Only after the round ends we can update data and make the 
next round more "informed". 
 
 

Batch EPSILON-GREEDY 
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Probably, the system delivering ads allows you to specify a 
frequency policy. 
We mean that you can assign (via program): 
ad 1 has weight 60% 
ad 2 has weight 30% 
ad 3 has weight 10% 
The delivering system (let us call it the ad server) interprets 
these instructions and delivers the ads with the specified 
frequencies. 
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Imagine that to select each ad it generates a random integer 
number x in the range 1..100 and selects ad 1 if 1 ≤ x ≤ 60, or 
ad 2 if 61 ≤x ≤ 90, or ad 3 if 91 ≤x ≤ 100. 
 
The effect is similar but not equal to what would happen if 
you can control each single decision using up-to-date data, 
instead that a batch od decisions using invariant data. 
 
Each ad server has its own technique for specifying ad 
selection during a round. If you cannot specify relative 
frequencies, you have to adapt Epsilon-Greedy to its specific 
technique. Possibly, this adaptation can turn out to be very 
difficult or even impossible in practice. 
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The Epsilon-Greedy policy makes each round a choice 
between two policies: Greedy and Random. So, exploration 
and exploitation are mixed yet remaining visibly distinct, this 
or that. 
We can say Epsilon-Greedy uses a binary decisional criterion 
at the single-round level: 100% exploration or 0%. At the 
global level, the mix is continuous, i.e. exploration will be say 
5.2% of the total. 
Now we examine a policy which makes the exp-exp mixing 
continuous for each round. 
 

Softmax policy 
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The idea is to make ad A more likely to be selected than ad B, 
if A is performing better than B. More precisely, if A is 
slightly better than B, its probability to be selected should be 
slightly greater. If much better, much greater probability. 
 
This idea is implemented by the Softmax policy. The name 
Softmax derives from the idea "choose the max performance, 
but in a soft way: not each time, only often". 
 
A first, not well working, implementation could be: 
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Softmax Policy (naïve version) 
For each round t in 1..N 
    compute qi = ctr of ad ai // Measure quality 

    compute 𝑝𝑖 =  𝑞𝑖
∑ 𝑞𝑗𝑗

 

    select an ad according to probabilities pi 

    show it and update its history (imps, clicks, ctr) 

 
Given probabilities, doing selection according to it means 
using a roulette mechanism, as previously seen speaking 
about ad servers. 
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This version of the algorithm is too naïve. 
Imagine we have two ads. Until now, A is 3 times better than 
B. With this method, we select A 3 times more likely. 
This is like using Epsilon-Greedy with exploration rate 
ε = 25% 
This can be acceptable initially, but advancing in time appears 
to be excessive, a waste of rounds. 
We refine the policy computing 

𝑝𝑖 =
𝑒𝑞𝑖

∑ 𝑒𝑞𝑗𝑗
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The fundamental meaning of the exponential function is 
expressing a growth process in which the growth rate is 
proportional to the current size. 
So, if A has quality 3 times the quality of B, then the 
probability of selecting A will be not 3 times greater, but 
𝑒3times greater, i.e. 20.09 times greater. 
The exponential transformation exalts the differences, prizing 
the best ads much more than proportionally. 
Yet, not absolutely: a worse ad keeps some chance to be 
selected. In this sense the method chooses the (soft)max 
candidate. 
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Now let us see the true Softmax method which includes an 
adaptive mechanism which makes the exploration rate to 
change over time 
Softmax Policy (naïve version) 
For each round t in 1..N 
    compute qi = ctr of ad ai // Measure quality 

    compute 𝑝𝑖 = 𝑒
𝑞𝑖
𝑇

∑ 𝑒
𝑞𝑗
𝑇𝑗

 

    select an ad according to probabilities pi 

    show it and update its history (imps, clicks, ctr) 
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Let us interpret 

𝑝𝑖 =
𝑒
𝑞𝑖
𝑇

∑ 𝑒
𝑞𝑗
𝑇𝑗

 

 
The ad number i is assigned a probability which is 
exponential (exalted) in its quality, as before. 
Now, the quality of each ad is divided by a parameter T 
(chosen by the algorithm designer, i.e. by us). The parameter 
is called temperature. It tunes exploration rate. The bigger the 
temperature, the bigger the exploration rate. 
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𝑝𝑖 =
𝑒
𝑞𝑖
𝑇

∑ 𝑒
𝑞𝑗
𝑇𝑗

 

To interpret formulas, it is often useful to check first what 
happens in extremum conditions. 
If the temperature is very high, much greater than the 
qualities, then the exponents are very small. So, the exponents 
(the arguments of the exponential functions, qj/T) are close to 
0. Then, the exponentials themselves are close to 1 and very 
similar each other. High temperature means little attention to 
differences. Respective qualities are not really important. 
Each ad is assigned a probability close to 1 / K, uniformly. 
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𝑝𝑖 =
𝑒
𝑞𝑖
𝑇

∑ 𝑒
𝑞𝑗
𝑇𝑗

 

Vice versa, if the temperature is very low, much lower than 
the qualities, then the exponents are very large. So, the 
exponents (the arguments of the exponential functions, qj/T) 
are very large. Then, the exponentials themselves are very 
large, but larger qualities are exalted much more than 
smaller qualities. 
Low temperature means great attention to differences. 
Respective qualities are extremely important. 
The best ad is assigned a probability close to 1, each other a 
probability close to 0. 
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𝑝𝑖 =
𝑒
𝑞𝑖
𝑇

∑ 𝑒
𝑞𝑗
𝑇𝑗

 

At this point an extremely important idea emerges. 
We start at round 1 with a very large T parameter. Differences 
are flattened and in practice the Softmax approximates the 
Random policy. Exploration rate is close to 1. 
Then, we gradually reduce the temperature. 
Differences in quality get progressively more important and 
exploration rate decreases. 
We continue decreasing temperature and get very close to 0. 
Progressively the Softmax approximates the Greedy policy. 
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𝑝𝑖 =
𝑒
𝑞𝑖
𝑇

∑ 𝑒
𝑞𝑗
𝑇𝑗

 

This method of gradually reducing temperature is named 
simulated annealing (for reasons which are interesting but not 
relevant now). 
While time flows, Softmax moves from quasi-Random to 
quasi-Greedy. This fits very well with intuition: start 
exploring a lot, then decrease exploration rate, get closer and 
closer to pure exploitation towards the end of the game. 



38 

𝑝𝑖 =
𝑒
𝑞𝑖
𝑇

∑ 𝑒
𝑞𝑗
𝑇𝑗

 

Very intriguing. 
Unfortunately, tuning parameter T is really an hard task. 
Anyway, if you manage to fine-tuning it, the method can be 
very effective. 
Moreover, we will meet similar concepts later. 
 
Implementation of Softmax is simple, but requires care to 
avoid arithmetical overflow when computing exponentials, 
which can be extremely large or extremely small numbers. 
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