
Single Resource 
Capacity Allocation 

Part 1 



The Context 

We are a passenger airline. 

We sell seats on air flights accepting bookings. 

Our goal is to maximize revenue. 

We are subject to capacity constraints, e.g. a certain flight has 

Capacity = 100 seats 

The basic formula is 

Revenue = Price x Quantity 

where Quantity is the number of seats sold. 

In order to maximize Revenue we can use both levers, price and 
Quantity. 

For the moment, we are going to use only Quantity. 



  

The idea is to divide the available capacity in two or more blocks, 
allocating each block to a different combination of time, space, sale 
channel and customer segment. 

For example, we can offer seats with these policies: 

• 40 seats today, reserving 60 seats for tomorrow; 

• 30 seats for passengers form Rome and 70 from Milan ; 

• 50 seats for males and 50 for females; 

• 80 seats at most for adults, reserving 20 for young people; 

• combinations of policies like above. 

Each capacity block has an Expected Revenue: it is defined afterwards. 

We want to maximize the expected revenue for each capacity block. 

Prices are assumed as given, for the moment. 

 



The Two-Class Problem 

A flight with fixed capacity serves two classes of customers: 
1. Discount customers who book early. 
2. Full-fare customers who book later. 
 
What is the rational of such a scheme? 
We know some customers are less price-sensitive, e.g. customers 
flying for business reasons. Others are more price-sensitive, e.g. those 
travelling for tourism. 
We also know that type 1 customers book later, type 2 early. 
This scheme is learnt form experience: it is not exact, but 
approximates reality well enough. 
We are using booking time as indicator of what is really important: 
price-sensitiveness. 
The idea is simple: late-booking people are likely to be less price-
sensitive, so we offer them seats for a higher price. 
 



  

Discount customers pay a fare pd, full-fare customers pay pf > pd. 

Prices pd and pf are given: we chose them for some reason, but 
here it does not matter what reason. 

We assume that all discount booking request occur before any 
full-fare request. 

The flight has a limited capacity (i.e. number of seats). 

Basic problem: how many discount booking request should we 
accept at most? This number is named booking limit. 

Equivalent formulation: how many seats should we protect for 
full-fare customers? This number is named protection level. 

Booking limit b and protection level y are bound by the 
equivalence y = C – b, where C is the capacity. 

 



  

Let C = 100: the flight has 100 seats. 

If we decide to accept at most 70 request for discount fare pd during 
the first round of booking, then b = 70 and y = 30. 

If we receive 65 bookings in the first round for the discount fare pd , 
then we accept all them. If we receive 75 bookings, we accept 70 and 
refuse 5. 

Equivalently, we can start reserving 30 seats for the second round, 
when the fare is pf. This means to set y = 30 and consequently b = 70. 

 

It is important to note that seats available for booking in the first 
round but left unsold are available for booking in the second round. 

If b = 70 and in the first round we get 65 bookings, we accept them 
and we still have 35 seats available in the second round. 

 

 



  

The key point is the trade-off between two risks: 

1. Spoiling. Setting booking limit too low, we will turn away 
discount passenger requiring a seat in the first round. If in 
the second round we do not see enough full-fare demand to 
fill the plane, it will depart with empty seats (spoiled seats). 

2. Dilution. Setting booking limit too high, we will allow too 
many customers to book at discount price in the first round. 
If in the second round we see a full-fare demand exceeding 
still available seats, then we will turn away more profitable 
passengers, available to pay the full fare. 

The trade-off is shown in the graphical form of a decision tree in 
the following picture. 
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The question is what is the additional revenue brought by an 
increment of the booking limit b? 

We are speaking of additional revenue, also known as marginal 
revenue, the revenue added by one more unit. 

Leaves of the tree show the variation in revenue caused by a 
decision. 

The square node is a decision node: we can choose between 
incrementing b to b + 1 and holding b constant. 

Circle nodes are event nodes: something outside our control 
happens with a certain probability, and we face some 
consequences. 

 



  

The decision of holding b constant carries no uncertainty: with 
probability 1, i.e. with certainty, we gain a marginal revenue of 0. 

It is trivial: our action is changing nothing, the consequence is 
getting nothing different. 

Probability 1 is omitted for brevity, we could have written it on 
the edge of the tree. 

More interesting is the decision of incrementing the booking 
limit by one more seat. 

Now we accept one more booking: if there is a (b + 1)th request, 
then we accept it, while without the increment we would have 
refused it. 

 



  

With dd and df we denote the demand (number of bookings) in 
the first and second round, respectively. 

If dd <= b, then incrementing the booking limit has no effect at 
all. The additional available seat is not requested, so nothing 
different happens. The marginal revenue is 0. 

If dd > b, then the additional available seat is actually requested, 
and our decision causes one more seat sold in the first round. 

Our revenue in the first round with the increment decision is 
incremented by pd (the price of a seat in the first round) 
compared with our revenue in the first round without that 
decision. 

This is good news. Is there bad news? Maybe. 



  

It depends on df, the demand level in the second round. 

If df <= C – b, then we will have no regret: the (b + 1)th seat sold in the 
first round due to our decision would otherwise have been unsold. 

No bad news: our decision gives us an additional revenue today 
without any loss tomorrow. Actually, we have reduced spoilage. 

Instead, if df > C – b, then we will have regret: the seat additionally sold 
today (because our decision) at price pd would have been sold 
tomorrow at greater price pf. 

In this scenario we pay an opportunity cost: selling today costs a lost 
sale tomorrow. We incurred in dilution. 

These considerations justify marginal revenue figures in the picture: 
note that the second leave shows a negative marginal revenue. 



  

The expected marginal revenue is the differential value of our 
decision, i.e. the expected additional revenue due to our 
decision of incrementing the booking limit. 

We compute it as the sum of possible outcomes (i.e. marginal 
values on leaves of the decision tree), each weighted with the 
probability of this outcome to occur. 

Let us denote the action of incrementing b by one seat with h(b) 
and the expected value of our decision with E[h(b)]. 

Let us define 
𝐹𝑑(𝑥) = 𝑃(𝑑𝑑 ≤ 𝑥) 

This is the distribution probability function of the demand in the 
first round. It gives the probability of demand not exceeding x 
bookings. Analogously, Ff(x) = P(df ≤ x). 

 



  

The formula for expected marginal revenue of incrementing the 
booking limit can be written as 

𝐸 ℎ 𝑏

= 𝐹𝑑 𝑏 0 + 1 − 𝐹𝑑 𝑏 { 1 − 𝐹𝑓 𝐶 − 𝑏 𝑝𝑑 − 𝑝𝑓

+ 𝐹𝑓 𝐶 − 𝑏 𝑝𝑑} 

Simplifying: 

𝐸 ℎ 𝑏 = 1 − 𝐹𝑑 𝑏 {𝑝𝑑 − 1 − 𝐹𝑓 𝐶 − 𝑏 𝑝𝑓 

If the term on the right-hand side is greater than zero, then 
increasing the booking limit we increase the expected revenue. 

If it is less than zero, increasing the booking limit we decrease 
the revenue. 



  

Our decision criterion is: 

Increase the booking limit from b to b + 1 if and only if: 

𝐸 ℎ 𝑏 = 1 − 𝐹𝑑 𝑏 {𝑝𝑑 − 1 − 𝐹𝑓 𝐶 − 𝑏 𝑝𝑓 > 0 

By definition, [1 – Fd(b)] cannot be negative, because it is a 
probability, more precisely the probability of demand in the 
second round exceeding b. 

It could be zero if it were impossible to have a demand 
exceeding b: let us assume it is not the case (the line of 
reasoning is not really affected by this assumption). 

We can suppress that term and state the decision criterion again: 

Increase the booking limit from b to b + 1 if and only if: 

𝑝𝑑 − 1 − 𝐹𝑓 𝐶 − 𝑏 𝑝𝑓 > 0 

 



  

Rewriting the equation, we get: 

Increase the booking limit from b to b + 1 if and only if: 

1 − 𝐹𝑓 𝐶 − 𝑏 <  
𝑝𝑑

𝑝𝑓
 

In natural language, this means what follows. 

Incrementing the booking limit is a good decision (incrementing 
expected revenue) if and only if the probability of the demand in 
the second round exceeding the number of seats left excluded 
from booking in the first round is less than the ratio between the 
discount and the full fare. 

Note that the ratio on the right-hand side is between 0 and 1, 
which is consistent with the left-hand side being a probability. 



  

To reach a more intuitive formulation, let us define 
1 − 𝐹𝑓(𝐶 − 𝑏) ≝ 𝑅 

The interpretation of R is the risk of dilution, i.e. the risk of 
tomorrow regret of having sold the (b+1)th seat today. 

The decision criterion is now 

Increase the booking limit from b to b + 1 if and only if: 
𝑅𝑝𝑓 <  𝑝𝑑 

In natural language, we require the certain (probability 1) 
additional revenue of today pd be greater than the possible 
(probability R) tomorrow opportunity cost pf. 



  

We are comparing two revenue figures, one certain and one 
uncertain. Or, if you prefer to think so, we are comparing a 
revenue figure with a cost figure. 

In both case, we are doing an inter-temporal comparison. 

Indeed, our decision causes a conflict between our interested of 
today (selling one more seat) with our interest of tomorrow 
(having one more seat available for sale). 

You can also see it as a conflict between the interest of today-us 
and the interest of tomorrow-us. 

In some sense, this is an auction: the first and the second round 
are the bidders, we are the auctioneer assigning the seat to the 
better bid. 



  

The key point to understand is that we are maximizing the expected 
revenue. 

We imagine two scenarios: 

1. We hold booking limit constant. 

2. We increment booking limit by 1 unit. 

For each scenario we estimate: 

a. The probability it happens. 

b. The revenue it brings if it happens. 

The expected revenue of each scenario is the product of a and b 
points. 

The scenario with the greater expected revenue is the winner. We 
assign the marginal unit of resource, i.e. the (b + 1)th seat, to the 
winner. 

 



  

The marginalistic analysis gave us a criterion to choose between 
incrementing or not incrementing a certain level of booking 
limit. 

Now we know how to decide if it is better to hold constant a 
certain given b or to increment it to b + 1. 

Is this sufficient to find the optimal value of b? 

This is our ultimate goal: to find the booking limit giving us the 
maximum possible revenue. 

The answer is yes. Using this criterion we can find the optimal 
booking limit. 

 



  

Let us start with booking limit b = 0. 

We ask if it better to increment b to 1. The decision criterion says 
yes. 

Now we state b ← 1. 

The next step is to ask if it is better to increment b to 2. 

At each step, if the answer is positive, then we increment b. 

We eventually stop because: 

• Either b = C, i.e. the booking limit reached the capacity. A 
further increment would be desirable, but it is not possible. 

• Or the decision criterion says no. A further increment is not 
desirable. 

In both cases, the last level of b we reached is the optimal one. 

 



  

Let us name this last booking limit as b*. 

It is either 

b* = C 

or 

b* = max x such that 1 – Ff(C – x) < pd / pf 

The concept is very general: 

We are in the optimal situation if each unitary step in any 
direction is impossible or makes our situation worse. 

Actually, this intuitive statement is true only if some conditions 
are satisfied. In many practical problems it is the case. The 
problem at hand, finding the optimal booking limit, belongs to 
the class of lucky cases, where these conditions are satisfied. 

 



Hill-climbing Algorithm 

The previous marginalistic analysis suggests an algorithm for 
computing the optimal booking limit. 

1. Set b ← 0. 

2. If b = C, set b* ← C and stop. 

3. Compute 𝐸 ℎ 𝑏 = 𝑝𝑑 − [1 − 𝐹𝑓 𝐶 − 𝑏 ]𝑝𝑓. 

4. If 𝐸 ℎ 𝑏 ≤ 0  or 𝐹𝑑 𝑏 + 1 = 1 set b* ← b and stop. 

5. If 𝐸[ℎ 𝑏 ] > 0 and 𝐹𝑑 𝑏 + 1 < 1, set b ← b + 1 and stop. 

The concept is simple: start with booking limit 0 and increment it 
by one until another increment decrease the expected revenue, 
or the capacity is completely used. 



  

This kind of algorithm is named hill-climbing. 

At each step we increment something (our decision lever, here 
the booking limit) if this move increase the outcome (here the 
expected revenue). 

We stop as soon as a further move is not useful. 

 

These algorithms are generally simple to implement, but suffer 
of a major drawback: they reach a local optimum (best among 
immediate neighbors), not necessarily a global optimum (best 
among all). 

For some problems, there exist only one optimum, which is both 
local and global. The two-class booking limit problem belongs to 
this class of problems, so we can use it safely. 



Littlewood’s Rule 

The previous algorithm find the value b* such that 

1 − 𝐹𝑓 𝐶 − 𝑏∗ =
𝑝𝑑

𝑝𝑓
 

Using the optimal protection level y*, the equivalent formula is 

1 − 𝐹𝑓 𝑦∗ =
𝑝𝑑

𝑝𝑓
 

We previously saw this equation, which is known as Littlewood’s 
Rule. It is of big historical importance: in 1972 it was the seminal 
result for a theory which is now extremely rich and complex. 

To better grasp the intuitive meaning of the rule, think of its 
behavior when the price ratio tends to 0 or 1, or when the Ff 
tends to 0 or 1. 



  

The cumulative distribution function of the full-fare demand Ff 
can be expressed as a mathematical function or empirically with 
a data table. 

If we can compute its inverse Ff
-1, then the optimal protection 

level can be explicitly represented as 

𝑦∗ = min [𝐹𝑓
−1 1 −

𝑝𝑑

𝑝𝑓
, 𝐶] 

Note that the optimal protection level (or, equivalently, the 
optimal booking limit) does not depend on the forecast of 
discount demand. The optimal choice is simply the reserve for 
the second booking round exactly the number of requests that 
will arrive, leaving remaining seats for the first round. 



  

If the full-fare is 300€ and the discount fare is 150€, then the 
optimal protection level is the number of bookings which has 
probability 50% of being exceeded during the second booking 
round. 

If the cumulative distribution function Ff is an analytical 
probability distribution (e.g. a Gaussian Normal Distribution), 
then we can compute the protection level using well-known 
methods from probability calculus. 

If it is represented as data table, we choose the value giving circa  
50% as probability of excess. 

Even if we do not have a data table at disposition, the rule helps 
us providing a clear question: find an y whose risk of excess is 
about 50% and choose it as protection level. 



Newsvendor Problem 

Littlewood’s Rule for Capacity Allocation is a special case of the 
Newsvendor Problem, studied as early as 1888. 

A newspaper salesperson needs to determine how many 
newspapers to purchase at the beginning of the day to satisfy 
the day’s uncertain demand. 

He faces different costs if he purchases too much or too little: 

• Too many copies: at the end of the day some copies are 
unsold and worthless. 

• Too few copies: he will sell out and turn away potentially 
profitable customers. 



  

We name overage cost the cost per unit of purchasing too many 
items, and underage cost the unit cost of purchasing too few. 

If the newsvendor buys newspapers for 20 cents and sells them 
at 25 cents per unit, then the overage cost is O = 20 and the 
underage cost is U = 5. 

The overage cost is an actual monetary cost. 

The underage cost is virtual, an opportunity cost, i.e. the profit 
missed due to non-optimal decision (U = 25 – 20). 

The optimal order quantity is y* satisfying 

𝐹 𝑦∗ =
𝑈

𝑈 + 𝑂
 


