
Exam of Decision Support Systems / Decision Support Databases:
Example 1

It is forbidden to consult any material during the test. Duration of written exam is 2h.

1. (Mandatory) Let us consider the following database, without null values:

Products

PkP UnitPrice . . .

10 5 . . .
20 10 . . .
30 20 . . .

Sales

FkP Qty . . .

10 50 . . .
20 10 . . .
30 20 . . .
10 30 . . .
20 100 . . .
30 10 . . .
10 30 . . .

(a) (1 point) Write an SQL query to find the total sales revenue by product.
(b) (1 point) Give a logical query plan for the SQL query, the type and the value of the result. Modify

the logical query plan to consider only products with UnitPrice > 5 sold each of them more than 5
times.

(c) (1 point) Modify the SQL query to find also the rank of the product total quantity sold (the highest
is first)).

(d) (1 point) Show the instance of an index on the attribute FkP.
(e) (1 point) Show the instance of a Foreign Column Join Index on the attribute UnitPrice.

2. (5 points) Consider the FoodMart datawarehouse:

1

Consider a customer customer id in a day time id when she/he has made a purchase. The customer is
occasional if she/he has made purchases for at most 10 euros in the previous 45 days. Give an analytic
SQL query to output for every customer id and time id that are NOT occasional, the total sales in the
previous 45 days.

3. See lecture notes Exercise A.4: Inventory.
With respect to the above business scenario, answer the following questions:

(a) (6 points) Design a conceptual schema for the data mart to support the business questions. Your
schema should at least be able to satisfy the above mentioned analysis requirements. You may moti-
vate other suitable attributes for the dimensions. Specify the fact granularity, and for each measure,
if it is additive, semi-additive or non-additive, and for each dimensional attribute the type of updates
of the attribute.

(b) (3 points) Give a logical data mart design which is able to deal with updates of dimensional attributes.
(c) (1 point) Write an SQL query to answer one business questions of your choice and write a physical

query plan for the query using any index of your choice.

4. (5 points) Let us consider the following lattice of possible candidate views to materialize. The numbers
associated with the nodes represent the view size, measured in terms of the number of tuples in the view.
Select 3 views to materialize, different from N1, with the greedy algorithm HRU.

N1 (100)

N2 (50) N3 (75)

N5 (30)N4 (20) N6 (40)

N8 (10)N7 (1)

5. (5 points) Let us consider the logical schema of a data mart

Customer(PkCustPhoneNo, CustName, CustCity)
CallingPlans(PkPlanId, PlanName)
Calls(PkCustPhoneNo, FkPlanId, Day, Month, Year, Duration, Charge)

where PkPlanId e PlanName are two different keys, and the following query

Q: SELECT Year, PlanName, SUM(Charge) AS TC
FROM Calls, CallingPlans
WHERE FkPlanId = PkPlanId AND Year >= 2000 AND Year <=2005
GROUP BY Year, PlanName
HAVING SUM(Charge) > 1000;

Answer only one of the following questions:

(a) Show if and how the GROUP BY can be brought forward on the table Calls.
(b) Show if and how the query can be rewritten using the materialized view

V1: SELECT FkPlanId, Month, Year, SUM(Charge) AS C
FROM Calls
WHERE Year >= 2000
GROUP BY FkPlanId, Month, Year;

2

Exam of Decision Support Databases: Solution Example 1 (Hints)
1. (a) The SQL query is:

SELECT PkP, SUM(UnitPrice*Qty) AS TR
FROM Sales, Products
WHERE FkP = PkP
GROUP BY PkP;

(b) The logical query plan is:

PkPγ SUM(UnitPrice*Qty) AS TR

▷◁
FkP = PkP

Sales Products

The type of the result is {(PkP:int, TR:int)}. The value of the result is:

Products

PkP TR

10 550
20 1100
30 600

The modified logical query plan is:

σ C > 5

PkPγ SUM(UnitPrice*Qty) AS TR, COUNT(*) AS C

▷◁
FkP = PkP

Sales σ UnitPrice > 5

Products

(c) The modified SQL query is:
SELECT PkP, SUM(UnitPrice*Qty) AS TR, RANK () OVER (ORDER BY SUM(Qty) DESC) AS Rk
FROM Sales, Products
WHERE FkP = PkP
GROUP BY PkP;

3

(d) and (e) These are the instances of the indexes:

Index on FkP

FkP RID

10 1
10 4
10 7
20 2
20 5
30 3
30 6

FCJI on UnitPrice

UnitPrice RID

5 1
5 4
5 7

10 2
10 5
20 3
20 6

2. WITH tmp AS (
SELECT customer id, time id,

SUM(SUM(store sales)) OVER (
PARTITION BY customer id
ORDER BY time id
RANGE BETWEEN 45 PRECEDING AND CURRENT ROW) AS tot

FROM sales fact
GROUP BY customer id, time id

)
SELECT ∗
FROM tmp
WHERE tot>10
ORDER BY customer id, time id;

3. (a) Requirements specification and the conceptual design of a data mart for the inventory. See
lecture notes solution to Exercise A.4: Inventory.

(b) Logical design of the data mart and the SQL queries. See lecture notes solution to Exercise A.4:
Inventory.

(c) Physical query plan. See lecture notes.

4. The application of the HRU algorithm yields:

First Choice Second Choice Third Choice

N2 50× 5 = 250
N3 25× 5 = 125 25× 2 = 50 25
N4 80× 2 = 160 30× 2 = 60 30× 2 = 60
N5 70× 3 = 210 20× 3 = 60 20× 2 + 10 = 50
N6 60× 2 = 120 60+ 10 = 70
N7 99× 1 = 99 49× 1 = 49 49
N8 90× 1 = 90 40× 1 = 40 30

5. (a) Show if and how the GROUP BY can be brought forward on the table Calls.
The selection on Year can be pushed on Calls below the join.
The group-by can be pushed on Calls below the join because the invariant grouping property holds:
the aggregate function SUM(Charge) uses an attribute from Calls, and (Year, PlanName → FkPlanId)
because

(Year, PlanName)+ = {Year, PlanName, PkPlanId, FkPlanId}

4

σ TC > 1000

Year, PlanNameγ SUM(Charge) AS TC

σ Year >= 2000 AND Year <= 2005

▷◁
FkPlanId = PkPlanId

Calls CallingPlans

Figure 1: Logical query plan

πb
Year, PlanName, TC

σ TC > 1000

▷◁
FkPlanId = PkPlanId

Year, FkPlanIdγ SUM(Charge) AS TC

σ Year >= 2000 AND Year <= 2005

Calls

CallingPlans

Figure 2: Logical query plan with the group-by pushed below the join

(b) Show if and how the query can be rewritten using the materialized view

V1: SELECT FkPlanId, Month, Year, SUM(Charge) AS C
FROM Calls
WHERE Year >= 2000
GROUP BY FkPlanId, Month, Year;

FkPlanId, Month, Yearγ SUM(Charge) AS C

σ Year >= 2000

Calls

Figure 3: Logical view plan

5

Let us use the approach with a transformation of the logical query plan in Figure 2, which can be
rewritten as follows with a subtree identical to V :

πb
Year, PlanName, TC

σTC > 1000

▷◁
FkPlanId = PkPlanId

Year, FkPlanIdγ SUM(C) AS TC

σYear <= 2005

Month, Year, FkPlanIdγ SUM(Charge) AS C

σYear >= 2000

Calls

CallingPlans

Figure 4: Logical query plan with the logical view subplan

6

The logical query plan with the logical view subplan is then rewritten as follows to translate it in
SQL. With the rewriting of the group-by over the join, the attribute PlanName of CallingPlans, used
by the projection, can be added to grouping attributes because (FkPlanId = PkPlanId) and PkPlanId →
PlanName.

πb
Year, PlanName, TC

σ TC > 1000

Year, FkPlanId, PlanNameγ SUM(C) AS TC

σ Year <= 2005

▷◁
FkPlanId = PkPlanId

Month, Year, FkPlanIdγ SUM(Charge) AS C

σ Year >= 2000

Calls

CallingPlans

Figure 5: Final version of the logical query plan with the logical view subplan

So the rewriting of Q succeeds:

Q1”: SELECT Year, PlanName, SUM(C) AS TC
FROM V1, CallingPlans
WHERE FkPlanId = PkPlanId AND Year <=2005
GROUP BY Year, FkPlanId, PlanName
HAVING SUM(C) > 1000;

7

Exam of Decision Support Systems / Decision Support Databases:
Example 2

It is forbidden to consult any material during the test. Duration of written exam is 2h.

1. (Mandatory) Let us consider the following database, without null values (F(Fk :int, B : int, C :int) and D(Pk
:int, E :string)) and the query:

SELECT Fk, COUNT(∗) AS Cn
FROM F, D
WHERE Fk = Pk AND E <> ’d3’
GROUP BY Fk
HAVING SUM(C) < 100;

D

Pk E

1 d1
2 d2
3 d3

F

Fk B C

1 10 60
1 20 20
2 30 80
2 20 25
3 30 80

(a) (1 point) Give a logical query plan for the SQL query, the type and the value of the result.
(b) (1 point) Show the instance of a bitmap index on the attribute Fk.
(c) (1 point) Show the instance of a Bitmap Foreign Column Join Index on the attribute E.
(d) (2 points) Explain the meaning of a “semi-additive” measure. Let F(FkD1, FkD2, M) be a table with

the “semi-additive” measure M with respect to the dimension D1. Give a correct and a wrong query
on the schema with the aggregation SUM(M).

2. (5 points) Consider the FoodMart datawarehouse:

A customer is called a commuter if she buys at least 70% of her purchases (total store sales) in stores
outside her city. Give an SQL query to find the number of commuters by customer city. The query must
return 0 for cities with no commuter.

8

3. See lecture notes Exercise A.5: Hotels.
With respect to the above business scenario, answer the following questions:

(a) (6 points) Design a conceptual schema for the data mart to support the business questions. Your
schema should at least be able to satisfy the above mentioned analysis requirements. You may moti-
vate other suitable attributes for the dimensions. Specify the fact granularity, and for each measure,
if it is additive, semi-additive or non-additive, and for each dimensional attribute the type of updates
of the attribute.

(b) (3 points) Give a logical data mart design which is able to deal with updates of dimensional attributes.
(c) (1 point) Write an SQL query to answer one business questions of your choice and write a physical

query plan for the query using any index of your choice.

4. (5 points) Let us consider the following lattice of possible candidate views to materialize. The numbers
associated with the nodes represent the view size, measured in terms of the number of tuples in the view.
Select 3 views to materialize, different from N1, with the greedy algorithm HRU. Determine the various
possible results of HRU on the basis of the unknown value X .

N1 (100)

N2 (50) N3 (75)

N5 (30)N4 (20) N6 (X)

N8 (10)N7 (1)

5. (5 points) Let us consider the database without null values:

Customer(PKCustomer, CName, CCity)
Order(PKOrder, FKCustomer, ODate)
Product(PKProduct, PName, PCost)
OrderLine(LineNo, FKOrder, FKProduct, Quantity, ExtendedPrice, Discount, Revenue)

and the query

Q: SELECT CCity, AVG(Revenue) AS avgR
FROM OrderLine, Order, Customer
WHERE FKOrder = PKOrder AND FKCustomer = PKCustomer
GROUP BY CCity, FKCustomer
HAVING SUM(Revenue) > 1000;

Answer only one of the following questions:

(a) Show if and how the GROUP BY can be pushed on the join
(OrderLine ▷◁

FKOrder = PKOrder Order),
and show if and how the GROUP BY can be pushed on the relation OrderLine.

(b) Show if and how the query Q can be rewritten using the materialized view V

V: SELECT FKCustomer, SUM(Revenue) AS TR, COUNT(*) AS Cnt
FROM OrderLine, Order
WHERE FKOrder = PKOrder
GROUP BY FKCustomer;

9

Exam of Decision Support Databases: Solution Example 2 (Hints)

1. (a) The logical query plan is:

πb
Fk, COUNT(∗) AS Cn

σSUM(C) < 100

Fkγ COUNT(∗), SUM(C)

▷◁
Fk = Pk

F σE <> ’d3’

D

The type of the result is {(Fk:int, Cn:int)}. The value of the result is:

Products

Fk Cn

1 2

(b) and (c) These are the instances of the indexes are:

Bitmap Index on Fk

Fk Bitmap

1 1 1 0 0 0
2 0 0 1 1 0
3 0 0 0 0 1

BFCJI on E

Fk Bitmap

d1 1 1 0 0 0
d2 0 0 1 1 0
d3 0 0 0 0 1

(d) A measure M is semi-additive w.r.t. a dimension D when it cannot be summed up for different values of
dimension D. E.g., the monthly balance cannot be summed for different months, but it can be summed
for different account holder at the same month. Here there are a correct and wrong query:

Correct: SELECT FkD1, SUM(M)
FROM F
GROUP BY FkD1;

Wrong: SELECT FkD2, SUM(M)
FROM F
GROUP BY FkD2;

10

2. WITH base AS (
SELECT F.customer id, C.city,

CASE WHEN S.store city=C.city THEN 0 ELSE 1 END AS other,
SUM(store sales) AS purchases

FROM sales fact F, customer C, store S
WHERE F.customer id = C.customer id AND F.store id = S.store id
GROUP BY F.customer id, C.city, CASE WHEN S.store city=C.city THEN 0 ELSE 1 END)

), tmp AS (
SELECT customer id, city, other,

100*SUM(purchases) OVER (PARTITION BY customer id, other) /
SUM(purchases) OVER (PARTITION BY customer id) AS Pct

FROM base
)
SELECT city, SUM(CASE WHEN other=1 AND Pct >= 70 THEN 1 ELSE 0 END) AS N
FROM tmp
GROUP BY city;

3. (a) Requirements specification and the conceptual design of a data mart for hotel room type uti-
lization. See lecture notes solution to Exercise A.5: Hotels.

(b) Logical design of the data mart and the SQL queries. See lecture notes solution to Exercise A.5:
Hotels.

(c) Physical query plan for the query

SELECT H.Name
, SUM(F.NOccupiedRooms) / (SUM(F.NOccupiedRooms) +

SUM(F.NVacantRooms) +
SUM(F.NUnavailableRooms))

AS OccupancyRate
FROM RoomTypeUtilization F, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = 20100717

AND H.City = ’Florence’
GROUP BY F.HotelFK, H.Name;

Let us assume that there is (a) a bitmap index on the fact table attribute DateFK, (b) a bitmapped
foreign column join index on the Hotel dimensional attribute City, and (c) an index on the primary key
of the dimensional tables.
Let us use the following abbreviations:
– F for RoomTypeUtilization.
– NOR for NOccupiedRooms.
– NVR for NVacantRooms.
– NUR for NUnavailableRooms.
– OR for OccupancyRate.
The physical query plan for the first data analysis is

11

Project
({Name,SUM(NOR)/(SUM(NOR)+SUM(NVR)+SUM(NUR))ASOR})

HashGroupBy
({HotelFK, Name}, {SUM(NOR), SUM(NVR), SUM(NUR)})

IndexNestedLoop
(HotelFK=HotelPK)

TableAccess
(F)

RIDFromBM

BMAnd

BMFCJIndexFilter
(IdxHF, City = ‘Florence’)

BMIndexFilter
(IdxDF, DateFK = 20100717)

IndexFilter
(Hotel, IdxPkH, HotelPK=HotelFK)

4. First, we observe that 10 ≤ X ≤ 75. The application of the HRU algorithm yields:

First Choice Second Choice Third Choice (X ≤ 55) Third Choice (X > 55)

N2 50× 4 = 200
N3 25× 4 = 100 25× 3 = 75 25× 1 = 25 25× 2 = 50
N4 80× 2 = 160 30× 2 = 60 30× 2 = 60 30× 2 = 60
N5 70× 1 = 70 20× 1 = 20 20× 1 = 20 20× 1 = 20
N6 (100−X)× 2 (100−X)× 2 (100−X)× 1
N7 99× 1 = 99 49× 1 = 49 49× 1 = 49 49× 1 = 49
N8 90× 1 = 90 90× 1 = 90 X − 10

Observe that:

– At the first choice, since 10 ≤ X then (100−X)× 2 ≤ 180. Hence N2 is better than N6.
– At the second choice, N6 is selected if (100−X)× 2 ≥ 90, which holds if X ≤ 55. Otherwise N8

is selected.
– At the third choice with X ≤ 55, N4 is selected because X − 10 ≤ 45.
– At the third choice with X > 55, N4 is selected because (100−X) < 45.

5. (a - first part) Show if and how the GROUP BY can be pushed on the join
(OrderLine ▷◁

FKOrder = PKOrder Order).

The group-by can be pushed on the join (OrderLine ▷◁
FKOrder = PKOrder Order) because the invariant

grouping property holds: the aggregate functions use an attribute from the join result, and (CCity,
FKCustomer → FKCustomer).

12

πb
CCity, avgR

σ SR > 1000

CCity, FKCustomerγ SUM(Revenue) AS SR, AVG(Revenue) AS avgR

▷◁
FKCustomer = PKCustomer

▷◁
FKOrder = PKOrder

OrderLine Order

Customer

Figure 6: Logical query plan

πb
CCity, avgR

σ SR > 1000

▷◁
FKCustomer = PKCustomer

FKCustomerγ SUM(Revenue) AS SR
, AVG(Revenue) AS avgR

▷◁
FKOrder = PKOrder

OrderLine Order

Customer

Figure 7: Logical query plan: the GROUP BY is pushed below the first join with the invariant grouping

(a - second part) Show if and how the GROUP BY can be pushed on the relation OrderLine.

OrderLine does not have the invariant grouping property because Condition 1 does not hold: FK-
Customer ̸→ FKOrder. The double grouping can be applied, with the rewriting of the not de-
composable aggregation function AVG(Revenue) as SUM(Revenue) / COUNT(Revenue), equivalent
to SUM(Revenue) / COUNT(∗) because the data mart is without null values.

13

πb
CCity, SR/C AS avgR

σ SR > 1000

▷◁
FKCustomer = PKCustomer

FKCustomerγ SUM(SR) AS SR
, SUM(C) AS C

FKOrder
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

▷◁
FKOrder = PKOrder

OrderLine Order

Customer

Figure 8: Logical query plan: the GROUP BY is rewritten with the double grouping and the rewriting of AVG

πb
CCity, SR/C AS avgR

σ SR > 1000

▷◁
FKCustomer = PKCustomer

FKCustomerγ SUM(SR) AS SR
, SUM(C) AS C

▷◁
FKOrder = PKOrder

FKOrderγ SUM(Revenue) AS SR
, COUNT(∗) AS C

OrderLine

Order

Customer

Figure 9: Logical query plan: the second GROUP BY is pushed below the second join with the invariant
grouping

(b) Show if and how the query Q can be rewritten using the materialized view V

Q: SELECT CCity, AVG(Revenue) AS avgR
FROM OrderLine, Order, Customer
WHERE FKOrder = PKOrder AND FKCustomer = PKCustomer
GROUP BY CCity, FKCustomer
HAVING SUM(Revenue) > 1000;

V: SELECT FKCustomer, SUM(Revenue) AS TR, COUNT(∗) AS Cnt

14

FROM OrderLine, Order
WHERE FKOrder = PKOrder
GROUP BY FKCustomer;

Let us use the approach with a compensation on the view.

Since the approach requires that the SELECT and HAVING clauses may contain only the aggregate
functions MIN, MAX, SUM and COUNT, the AVG function in Q is rewritten to compute it from given
values for SUM and COUNT.

πb
CCity, SR/C AS avgR

σ SR > 1000

CCity
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

▷◁
FKCustomer = PKCustomer

▷◁
FKOrder = PKOrder

OrderLine Order

Customer

(a) AQ

FKCustomerγ SUM(Revenue) AS TR
, COUNT(∗) AS Cnt

▷◁
FKOrder = PKOrder

OrderLine Order

(b) AV

Figure 10: Query and view logical query plans

The join operations do not match. Therefore, a compensation is added as shown in the figure:

πb
CCity, SR/C AS avgR

σ SR > 1000

CCity
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

▷◁
FKCustomer = PKCustomer

▷◁
FKOrder = PKOrder

OrderLine Order

Customer

(a) AQ

▷◁
PKCustomer = FKCustomer

Customer

FKCustomerγ SUM(Revenue) AS TR
, COUNT(∗) AS Cnt

▷◁
FKOrder = PKOrder

OrderLine Order

(b) AV

Figure 11: Join compensation

15

To match the groupings, the compensation on the operand of γV floats, and since g(Q) → g(V) ∧
g(V) → g(Q), the rewriting does not require a grouping compensation, but an aggregate compen-
sation only with a project, as shown in the figure:

πb
CCity, SR/C AS avgR

σ SR > 1000

CCity
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

▷◁
FKCustomer = PKCustomer

▷◁
FKOrder = PKOrder

OrderLine Order

Customer

(a) AQ

πb
CCity, FKCustomer, TR AS SR, Cnt AS C

▷◁
PKCustomer = FKCustomer

Customer

FKCustomerγ SUM(Revenue) AS TR
, COUNT(∗) AS Cnt

▷◁
FKOrder = PKOrder

OrderLine Order

(b) AV

Figure 12: The float of the join compensation and the groupings compensation

The other compensations required for the σ and πb in Q are shown in the figure:

πb
CCity, SR/C AS avgR

σ SR > 1000

CCity
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

▷◁
FKCustomer = PKCustomer

▷◁
FKOrder = PKOrder

OrderLine Order

Customer

(a) AQ

πb
CCity, SR/C AS avgR

σ SR > 1000

πb
CCity, FKCustomer, TR AS SR, Cnt AS C

▷◁
PKCustomer = FKCustomer

Customer

FKCustomerγ SUM(Revenue) AS TR
, COUNT(∗) AS Cnt

▷◁
FKOrder = PKOrder

OrderLine Order

(b) AV

Figure 13: Other compensations

Since the internal πb of the compensation is useless, the final solution is the following:

16

πb
CCity, SR/C AS avgR

σ SR > 1000

CCity
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

▷◁
FKCustomer = PKCustomer

▷◁
FKOrder = PKOrder

OrderLine Order

Customer

(a) AQ

πb
CCity, TR/Cnt AS avgR

σ TR > 1000

▷◁
PKCustomer = FKCustomer

Customer

FKCustomerγ SUM(Revenue) AS TR
, COUNT(∗) AS Cnt

▷◁
FKOrder = PKOrder

OrderLine Order

(b) AV

Figure 14: Final solution

Rewriting of Q:

QR: SELECT CCity, TR/Cnt AS avgR
FROM V, Customer
WHERE FKCustomer = PKCustomer AND TR > 1000;

17

Let us use the approach with a transformation of the logical query plan.

The rewriting of Q with the γ pushed below the first join

(OrderLine ▷◁
FKOrder = PKOrder Order)

produces a logical tree that, with the rewriting of AVG and the changing of SR and C in the γ with
TR and Cnt, has as subtree the tree of the view.

πb
CCity, TR/Cnt AS avgR

σSR > 1000

▷◁
FKCustomer = PKCustomer

FKCustomerγ SUM(Revenue) AS TR
, COUNT(∗) AS Cnt

▷◁
FKOrder = PKOrder

OrderLine Order

Customer

Figure 15: The rewriting of Q to have V as a subtree

Rewriting of Q:

QR: SELECT CCity, TR/Cnt AS avgR
FROM V, Customer
WHERE FKCustomer = PKCustomer AND TR > 1000;

18

