Exam of Decision Support Systems | Decision Support Databases:
Example 1

It is forbidden to consult any material during the test. Duration of written exam is 2h.

1. (Mandatory) Let us consider the following database, without null values:

Products Sales
PkP UnitPrice FkP Qty
10 5 ... 10 50
20 10 .. 20 10
30 20 ... 30 20
10 30
20 100
30 10
10 30

(a) (1 point) Write an SQL query to find the total sales revenue by product.

(b) (1 point) Give a logical query plan for the SQL query, the type and the value of the result. Modify
the logical query plan to consider only products with UnitPrice > 5 sold each of them more than 5
times.

(c) (1 point) Modify the SQL query to find also the rank of the product total quantity sold (the highest
is first)).

(d) (1 point) Show the instance of an index on the attribute FkP.
(e) (1 point) Show the instance of a Foreign Column Join Index on the attribute UnitPrice.

2. (5 points) Consider the FoodMart datawarehouse:

customer
customer_id -
account_num
Iname
fname
mi
address1
address2 -
address3
address4
city
state_province
postal_code
country
. . ﬂ uroduct
[?f product_class_id L
¢ product_id Droduct class
! brand_name product_class_id
sales fact —— product name product_subcategory
fact id KU product category
reulon 9-co store product id e product_department
store_id a time_id product_family
region id gross_weight -
s cit store_type customer_id .
sal
v region.id promotion_id net.weight ﬂ
sales_state_province gion. =
sales_district store_name store.id
3 store_number Q@ store_sales = “Itime bv dav
sales_region S
store street address store_cost Column Name A
sales.country t_sales time_id [
unit s d |
sales_district_id store_city -
store_state q the date
store_postal_code (f the_day
the_month
store_country !
Dromotlon the_year
store_manager v promotion_id o month
promotion_district_id we;k ;f year
promotion_name mon{h ;Uear
media_type quarte; i
cost fiscal_period M
start_date
end_date b -

Consider a customer customer_id in a day time_id when she/he has made a purchase. The customer is
occasional if she/he has made purchases for at most 10 euros in the previous 45 days. Give an analytic
SQL query to output for every customer_id and time_id that are NOT occasional, the total sales in the
previous 45 days.

. See lecture notes Exercise A.4: Inventory.
With respect to the above business scenario, answer the following questions:

(a) (6 points) Design a conceptual schema for the data mart to support the business questions. Your
schema should at least be able to satisfy the above mentioned analysis requirements. You may moti-
vate other suitable attributes for the dimensions. Specify the fact granularity, and for each measure,
if it is additive, semi-additive or non-additive, and for each dimensional attribute the type of updates
of the attribute.

(b) (3 points) Give a logical data mart design which is able to deal with updates of dimensional attributes.

(c) (1 point) Write an SQL query to answer one business questions of your choice and write a physical
query plan for the query using any index of your choice.

. (5 points) Let us consider the following lattice of possible candidate views to materialize. The numbers
associated with the nodes represent the view size, measured in terms of the number of tuples in the view.
Select 3 views to materialize, different from /N;, with the greedy algorithm HRU.

. (5 points) Let us consider the logical schema of a data mart

Customer(PkCustPhoneNo, CustName, CustCity)
CallingPlans(PkPlanid, PlanName)
Calls(PkCustPhoneNo, FkPlanld, Day, Month, Year, Duration, Charge)

where PkPlanld e PlanName are two different keys, and the following query

Q: SELECT Year, PlanName, SUM(Charge) AS TC
FROM Calls, CallingPlans
WHERE FkPlanld = PkPlanld AND Year >= 2000 AND Year <=2005
GROUP BY Year, PlanName
HAVING SUM(Charge) > 1000;

Answer only one of the following questions:

(a) Show if and how the GROUP BY can be brought forward on the table Calls.
(b) Show if and how the query can be rewritten using the materialized view

V1: SELECT FkPlanld, Month, Year, SUM(Charge) AS C
FROM Calls
WHERE Year >= 2000
GROUP BY FkPlanld, Month, Year;

Exam of Decision Support Databases: Solution Example 1 (Hints)
1. (a) The SQL query is:

SELECT PkP, SUM(UnitPrice*Qty) AS TR
FROM Sales, Products
WHERE FkP = PkP

GROUP BY PkP;
(b) The logical query plan is:

PkP Y SUM(UnitPrice*Qty) AS TR

D
FkP = PkP

I

Sales Products

The type of the result is {(PkP:int, TR:int) }. The value of the result is:

Products
PkP TR

10 550
20 1100
30 600

The modified logical query plan is:

Oc>5

PkP Y SUM(UnitPrice*Qty) AS TR, COUNT(*) AS C

>
FkP = PkP
Sales T UnitPrice > 5
Products
(¢c) The modified SQL query is:

SELECT PkP, SUM(UnitPrice*Qty) AS TR, RANK () OVER (ORDER BY SUM(Qty) DESC) AS Rk
FROM Sales, Products

WHERE FkP = PkP

GROUP BY PkP;

(d) and (e) These are the instances of the indexes:

Index on FkP
FkP RID

10
10
10
20
20
30
30

2. WITH tmp AS (
SELECT customer_id, time_id,

ODWOINNB =

SUM(SUM(store_sales)) OVER (
PARTITION BY customer.id
ORDER BY time._id
RANGE BETWEEN 45 PRECEDING AND CURRENT ROW) AS tot

FROM sales_fact
GROUP BY customer_id, time_id
)
SELECT =«
FROM tmp
WHERE tot>10
ORDER BY customer.id, time_id;

FCJI on UnitPrice

UnitPrice RID

5
5
5
10
10
20
20

DOWOINNNPD =

3. (a) Requirements specification and the conceptual design of a data mart for the inventory. See
lecture notes solution to Exercise A.4: Inventory.

(b) Logical design of the data mart and the SQL queries. See lecture notes solution to Exercise A.4:

Inventory.
(c) Physical query plan. See lecture notes.

4. The application of the HRU algorithm yields:

First Choice

Second Choice

N2 50x5=250
N3 25x5=125
Ns 80 x2=160
Ns 70x3=210
Neg 60 x2=120
N7 99x1=99

Ng 90x1=90

25 x2=50
30 x2=060
20 x 3 =160
60+ 10 =170
49x1=49
40x 1 =40

Third Choice
25
30 x 2=60

20 x 2410 =150

49
30

5. (a) Show if and how the GROUP BY can be brought forward on the table Calls.
The selection on Year can be pushed on Calls below the join.
The group-by can be pushed on Calls below the join because the invariant grouping property holds:
the aggregate function SUM(Charge) uses an attribute from Calls, and (Year, PlanName — FkPlanid)

because

(Year, PlanName)t = {Year, PlanName, PkPlanld, FkPlanld}

O 1C > 1000

Year, PlanName ¥ SUM(Charge) AS TC

UYear >= 2000 AND Year <= 2005

X
FkPlanld = PkPlanld

’—I—‘

Calls CallingPlans
Figure 1: Logical query plan

b
™ Year, PlanName, TC

9 1C > 1000

>
FkPlanld = PkPlanld

I
[\

Year, FkPlanld ¥ SUM(Charge) AS T¢ CallingPlans

O Year >= 2000 AND Year <= 2005

Calls

Figure 2: Logical query plan with the group-by pushed below the join

(b) Show if and how the query can be rewritten using the materialized view

V1: SELECT FkPlanld, Month, Year, SUM(Charge) AS C
FROM Calls
WHERE Year >= 2000

GROUP BY FkPlanld, Month, Year;

FkPlanld, Month, Year Y SUM(Charge) AS C

O Year >= 2000

Calls

Figure 3: Logical view plan

Let us use the approach with a transformation of the logical query plan in Figure 2, which can be
rewritten as follows with a subtree identical to V:

b
™ Year, PlanName, TC

I1C > 1000

[
FkPlanld = PkPlanld

I
[\

Year, FkPlanld ¥ sum(c) As Tc CallingPlans

O Year <= 2005

Month, Year, FkPlanld Y SUM(Charge) AS C

O Vear >= 2000

Calls

Figure 4: Logical query plan with the logical view subplan

The logical query plan with the logical view subplan is then rewritten as follows to translate it in
SQL. With the rewriting of the group-by over the join, the attribute PlanName of CallingPlans, used
by the projection, can be added to grouping attributes because (FkPlanld = PkPlanld) and PkPlanld —
PlanName.

7Tb
Year, PlanName, TC

T 1C > 1000

Year, FkPlanld, PlanName 7Y SUM(C) AS TC

O Year <= 2005

[
FkPlanld = PkPlanld

jmmmmmmm e -
|

Month, Year, FkPlanld ¥ SUM(Charge) As ¢, CallingPlans

|
| |
1 i
|
| O Year >= 2000 !
| |
| |
| |
| |
| |
|

Figure 5: Final version of the logical query plan with the logical view subplan

So the rewriting of () succeeds:

Q1”: SELECT Year, PlanName, SUM(C) AS TC

FROM V1, CallingPlans

WHERE FkPlanld = PkPlanld AND Year <=2005
GROUP BY Year, FkPlanld, PlanName

HAVING SUM(C) > 1000;

Exam of Decision Support Systems | Decision Support Databases:
Example 2

It is forbidden to consult any material during the test. Duration of written exam is 2h.

1. (Mandatory) Let us consider the following database, without null values (F(Fk :int, B : int, C :int) and D(Pk

iint, E :string)) and the query:

D F

SELECT Fk, COUNT(x) AS Cn
FROM ED Pk E Fk B C
WHERE Fk =Pk AND E <> 'd3’ 1 dl 1 10 60
GROUP BY Fk 2 d2 1 20 20
HAVING SUM(C) < 100; 3 d3 2 30 80
- 2 20 25
3 30 80

(a) (1 point) Give a logical query plan for the SQL query, the type and the value of the result.
(b) (1 point) Show the instance of a bitmap index on the attribute Fk.

(¢) (1 point) Show the instance of a Bitmap Foreign Column Join Index on the attribute E.

(d) (2 points) Explain the meaning of a “semi-additive” measure. Let F(FkD1, FkD2, M) be a table with
the “semi-additive” measure M with respect to the dimension D1. Give a correct and a wrong query

on the schema with the aggregation SUM(M).

2. (5 points) Consider the FoodMart datawarehouse:

store_country

store_manager v

promotion

media_type
cost
start_date
end_date

promotion_id
promotion_district_id

promotion_name

the_month
the_year
day_of_month
week_of_year
month_of_year
quarter

fiscal_period

KT

customer
¢ customer_id -
account_num
Iname
fname
mi
address1
address2 |
address3
address4
city
state_province
postal_code
country
. " M product
8 product_class_id A
) " “loroduct cl
¢ product_id product class
g brand_name * product_class_id
sales fact [S=3 S - duct name product_subcategory
_— » | factid wu product_category
reaion < store productid SRP product_department
% store_id A time_id duct famil
+ region_id - gross weight product_family
store_type customer_id
sales_city - promotion_id net_weight v
sales_state_province region_id o -
store_i
sales_district store_name P = N
- store_number I store_sales " “time bv dav
sales_region !
sales_country store_street_address store_cost Column Name A
N unit_sales ¢+ time_id
sales_district_id store_city - X é
store_state g the_date
store_postal_code 1 the_day

A customer is called a commuter if she buys at least 70% of her purchases (total store sales) in stores
outside her city. Give an SQL query to find the number of commuters by customer city. The query must
return O for cities with no commuter.

3. See lecture notes Exercise A.5: Hotels.
With respect to the above business scenario, answer the following questions:

(a) (6 points) Design a conceptual schema for the data mart to support the business questions. Your
schema should at least be able to satisfy the above mentioned analysis requirements. You may moti-
vate other suitable attributes for the dimensions. Specify the fact granularity, and for each measure,
if it is additive, semi-additive or non-additive, and for each dimensional attribute the type of updates
of the attribute.

(b) (3 points) Give a logical data mart design which is able to deal with updates of dimensional attributes.

(c) (1 point) Write an SQL query to answer one business questions of your choice and write a physical
query plan for the query using any index of your choice.

4. (5 points) Let us consider the following lattice of possible candidate views to materialize. The numbers
associated with the nodes represent the view size, measured in terms of the number of tuples in the view.
Select 3 views to materialize, different from Ny, with the greedy algorithm HRU. Determine the various
possible results of HRU on the basis of the unknown value X.

5. (5 points) Let us consider the database without null values:
Customer(PKCustomer, CName, CCity)
Order(PKOrder, FKCustomer, ODate)

Product(PKProduct, PName, PCost)
OrderLine(LineNo, FKOrder, FKProduct, Quantity, ExtendedPrice, Discount, Revenue)

and the query

Q: SELECT CCity, AVG(Revenue) AS avgR

FROM OrderLine, Order, Customer

WHERE FKOrder = PKOrder AND FKCustomer = PKCustomer
GROUP BY CCity, FKCustomer

HAVING SUM(Revenue) > 1000;

Answer only one of the following questions:

(a) Show if and how the GROUP BY can be pushed on the join
(OrderLine FKOrderD:]PKOrder Order),
and show if and how the GROUP BY can be pushed on the relation OrderLine.

(b) Show if and how the query Q can be rewritten using the materialized view V

V: SELECT FKCustomer, SUM(Revenue) AS TR, COUNT(*) AS Cnt
FROM OrderLine, Order
WHERE FKOrder = PKOrder

GROUP BY FKCustomer;

Exam of Decision Support Databases: Solution Example 2 (Hints)
1. (a) The logical query plan is:

b
Fk, COUNT(x) AS Cn

I sum(c) < 100

Fk Y COUNT(+), SUM(C)

>
Fk = Pk
F OF <> 43

D

The type of the result is {(Fk:int, Cn:int) }. The value of the result is:

Products
Fk Cn
1 2

(b) and (c) These are the instances of the indexes are:

Bitmap Index on Fk BFCJlon E

Fk Bitmap Fk Bitmap
1 11000 di 11000
2 00110 d2 00110
3 00001 d3 00001

(d) A measure M is semi-additive w.r.t. a dimension D when it cannot be summed up for different values of
dimension D. E.g., the monthly balance cannot be summed for different months, but it can be summed
for different account holder at the same month. Here there are a correct and wrong query:

Wrong: SELECT FkD2, SUM(M)
FROM F
GROUPBY FkD2;

Correct: SELECT FkD1, SUM(M)
FROM F
GROUP BY FkD1;

10

2. WITH base AS (

SELECT F.customer_id, C.city,
CASE WHEN S.store_city=C.city THENO ELSE1 END AS other,
SUM(store_sales) AS purchases

FROM sales_fact F, customer C, store S

WHERE F.customer_id = C.customer_id AND F.store_id = S.store_id

GROUP BY F.customer.id, C.city, CASE WHEN S.store_city=C.city THENO ELSE1 END)

), tmp AS (

SELECT customer_id, city, other,

100*SUM(purchases) OVER (PARTITION BY customer_id, other)/
SUM(purchases) OVER (PARTITION BY customer.id) AS Pct
FROM base

)

SELECT city, SUM(CASE WHEN other=1 AND Pct >=70 THEN1 ELSEO END) AS N
FROM tmp

GROUP BY city;

3. (a) Requirements specification and the conceptual design of a data mart for hotel room type uti-
lization. See lecture notes solution to Exercise A.5: Hotels.

(b) Logical design of the data mart and the SQL queries. See lecture notes solution to Exercise A.5:
Hotels.

(c) Physical query plan for the query

SELECT H.Name
, SUM(F.NOccupiedRooms) / (SUM(F.NOccupiedRooms) +
SUM(F.NVacantRooms) +
SUM(F.NUnavailableRooms))
AS OccupancyRate
FROM RoomTypeUltilization F, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = 20100717
AND H.City = Florence’
GROUP BY F.HotelFK, H.Name;

Let us assume that there is (a) a bitmap index on the fact table attribute DateFK, (b) a bitmapped
foreign column join index on the Hotel dimensional attribute City, and (c) an index on the primary key
of the dimensional tables.

Let us use the following abbreviations:

— F for RoomTypeUtilization.

— NOR for NOccupiedRooms.

— NVR for NVacantRooms.

— NUR for NUnavailableRooms.

— OR for OccupancyRate.

The physical query plan for the first data analysis is

11

Project
({Name,SUM(NOR)/(SUM(NOR)+SUM(NVR)+SUM(NUR)) AS OR})
\

HashGroupBy
({HotelFK, Name}, {SUM(NOR), SUM(NVR), SUM(NUR)})
|

IndexNestedLoop
(HotelFK=HotelPK)

1
I 1

TableAccess IndexFilter
(F) (Hotel, IdxPkH, HotelPK=HotelFK)

RIDFromBM

BMANd
I

I 1

BMFCJIndexFilter BMindexFilter
(IdxHF, City = ‘Florence’) (ldxDF, DateFK = 20100717)

4. First, we observe that 10 < X < 75. The application of the HRU algorithm yields:

First Choice Second Choice Third Choice (X < 55) Third Choice (X > 55)
N2 50 x4=200

Ns 25x4=100 25x3=75 25x 1 =25 25 x 2 = 50
Nis 80x2=160 30x2=60 30 x 2 =60 30 x 2 =60
Ns 70x1=70 20 x 1 =20 20 x 1 =20 20 x 1 =20
Ne (100 —X)x2 (100 — X) x 2 (100 — X) x 1
N7 99x1=99 49 x 1 =49 49 x 1 =49 49 x 1 =49

Ng 90x1=90 90 x 1 =90 X —10

Observe that:

At the first choice, since 10 < X then (100 — X') x 2 < 180. Hence Ny is better than Ng.

— At the second choice, Ny is selected if (100 — X') x 2 > 90, which holds if X < 55. Otherwise Ng
is selected.

At the third choice with X < 55, Ny is selected because X — 10 < 45.
— At the third choice with X > 55, Ny is selected because (100 — X') < 45.

5. (a- first part) Show if and how the GROUP BY can be pushed on the join
(OrderLine FKOrderDjPKOrder Order).

The group-by can be pushed on the join (OrderLine FKOrderDjPKOrder Order) because the invariant
grouping property holds: the aggregate functions use an attribute from the join result, and (CCity,
FKCustomer — FKCustomer).

12

b
T Ccity, avgR

O SR > 1000

CCity, FKCustomer ' SUM(Revenue) AS SR, AVG(Revenue) AS avgR

>
FKCustomer = PKCustomer

’—I—‘

>
FKOrder = PKOrder Customer

I

OrderLine Order
Figure 6: Logical query plan

b
™ CCity, avgR

O 3R > 1000

>
FKCustomer = PKCustomer
{ l ‘
FKCustomer) SUM(Revenue) AS SR
, AVG(Revenue) AS avgR Customer

X
FKOrder = PKOrder

I

OrderLine Order

Figure 7: Logical query plan: the GROUP BY is pushed below the first join with the invariant grouping

(a - second part) Show if and how the GROUP BY can be pushed on the relation OrderLine.

OrderLine does not have the invariant grouping property because Condition 1 does not hold: FK-
Customer 4 FKOrder. The double grouping can be applied, with the rewriting of the not de-
composable aggregation function AVG(Revenue) as SUM(Revenue) / COUNT(Revenue), equivalent
to SUM(Revenue) / COUNT(x) because the data mart is without null values.

13

7Tb ;
CCity, SR/C AS avgR

O SR > 1000

>
FKCustomer = PKCustomer
[l ‘
FKCustomer/ SUM(SR) AS SR
, SUM(C) AS C Customer

FKOrder 7V SUM(Revenue) AS SR
, FKCustomer COUNT(x) AS C

>
FKOrder = PKOrder

I

OrderLine Order

Figure 8: Logical query plan: the GROUP BY is rewritten with the double grouping and the rewriting of AVG

7Tb
CCity, SR/C AS avgR

O 3R > 1000

>
FKCustomer = PKCustomer
{ l ‘
FKCustomer/ SUM(SR) AS SR
, SUM(C) AS C Customer

>
FKOrder = PKOrder
[l ‘
EKOrder”’ SUM(Revenue) AS SR
, COUNT(x) AS C Order

OrderLine

Figure 9: Logical query plan: the second GROUP BY is pushed below the second join with the invariant
grouping

(b) Show if and how the query Q can be rewritten using the materialized view V

Q: SELECT CCity, AVG(Revenue) AS avgR
FROM OrderLine, Order, Customer
WHERE FKOrder = PKOrder AND FKCustomer = PKCustomer
GROUP BY CCity, FKCustomer
HAVING SUM(Revenue) > 1000;
V: SELECT FKCustomer, SUM(Revenue) AS TR, COUNT(x) AS Cnt

14

FROM OrderLine, Order
WHERE FKOrder = PKOrder
GROUP BY FKCustomer;

Let us use the approach with a compensation on the view.

Since the approach requires that the SELECT and HAVING clauses may contain only the aggregate
functions MIN, MAX, SUM and COUNT, the AVG function in () is rewritten to compute it from given

values for SUM and COUNT.

ﬂ'b ;
CCity, SR/C AS avgR

O SR > 1000

CCity Y SUM(Revenue) AS SR

, FKCustomer , COUNT(x) AS C

>
FKCustomer = PKCustomer

’—I—‘

D1
FKOrder — PKOrder CUStomer

I

OrderLine Order
(@) Aq

FKCustomer’ SUM(Revenue) AS TR
, COUNT(x) AS Cnt

>
FKOrder = PKOrder

I

OrderLine Order
(b) Ay

Figure 10: Query and view logical query plans

The join operations do not match. Therefore, a compensation is added as shown in the figure:

b
CCity, SR/C AS avgR

O 3R > 1000

CCity 7Y SUM(Revenue) AS SR
, FKCustomer , COUNT(x) AS C

>
FKCustomer = PKCustomer

’—I—‘

D
FKOrder — PKOrder ~CUStomer

i

OrderLine Order
(a) Ag

FKCustomer) SUM(Revenue) AS TR
, COUNT(x) AS Cnt

>
PKCustomer = FKCustome

‘ >
Customer FKOrder = PKOrder

i

OrderLine Order
(b) Av

Figure 11: Join compensation

To match the groupings, the compensation on the operand of ~y floats, and since g(Q) — g(V) A
g(V) — ¢(@), the rewriting does not require a grouping compensation, but an aggregate compen-
sation only with a project, as shown in the figure:

b
™ ; b
CCity, SRIC AS avgR T CCity, FKCustomer, TR AS SR, Cnt AS C
| 0

O'SR > 1000 PKCustomer = FKCustomer

! l
CCity Y SUM(Revenue) AS SR Customer 1
, FKCustomer , COUNT(x) AS C |
|
|

FKCustomer/ SUM(Revenue) AS TR

>
FKCustomer = PKCustomer

’—I—‘

D1
FKOrder — PKOrder CUStomer

——

OrderLine Order
(a) Ag

, COUNT(x) AS Cnt

>
FKOrder = PKOrder

——

OrderLine Order
(b) Av

Figure 12: The float of the join compensation and the groupings compensation

The other compensations required for the o and 7° in @) are shown in the figure:

b .
CCity, SR/C AS avgR

9 SR > 1000

CCity 7Y SUM(Revenue) AS SR
, FKCustomer , COUNT(x) AS C

>
FKCustomer = PKCustomer

’—I—‘

>
FKOrder = PKOrder Customer

i

OrderLine Order
(a) Ag

7Tb
CCity, SR/C AS avgR

O 3R > 1000

b
7‘-CCity, FKCustomer, TR AS SR, Cnt AS C

>
PKCustomer = FKCustomer

Customer

FKCustomer) SUM(Revenue) AS TR

, COUNT(x) AS Cnt

>
FKOrder = PKOrder

i

OrderLine Order
(b) Av

Figure 13: Other compensations

Since the internal 7® of the compensation is useless, the final solution is the following:

7Tb ;
CCity, SR/C AS avgR

O SR > 1000

CCity 7Y SUM(Revenue) AS SR
, FKCustomer , COUNT(x) AS C

>
FKCustomer = PKCustomer

’—I—‘

D
FKOrder — PKOrder CUStoOmer

i

OrderLine Order
(@) Aq

7l'b ;
CCity, TR/Cnt AS avgR

O TR > 1000

PKCustomer = FKCustomer

Customer
|
|
|
|

FKCustomer) SUM(Revenue) AS TR
, COUNT(x) AS Cnt

>
FKOrder = PKOrder

i

OrderLine Order
(b) Ay

Figure 14: Final solution

Rewriting of Q:

QR: SELECT CCity, TR/Cnt AS avgR
FROM V, Customer
WHERE

17

FKCustomer = PKCustomer AND TR > 1000;

Let us use the approach with a transformation of the logical query plan.
The rewriting of () with the ~y pushed below the first join
(OrderLine FKOrderDjPKOrder Order)

produces a logical tree that, with the rewriting of AVG and the changing of SR and C in the y with
TR and Cnt, has as subtree the tree of the view.

7.‘.b
CCity, TR/Cnt AS avgR

Osr > 1000

>
FKCustomer = PKCustomer
[l ‘
FKCustomer) SUM(Revenue) AS TR
COUNT(x) AS Cnt Customer

>
FKOrder = PKOrder

——

OrderLine Order

Figure 15: The rewriting of () to have V' as a subtree

Rewriting of Q):
QR: SELECT CCity, TR/Cnt AS avgR
FROM V, Customer
WHERE FKCustomer = PKCustomer AND TR > 1000;

18

