TODAY: RELATIONAL DBMS EXTENSIONS FOR DW

* SQL extensions

- Index and storage structures

- Star query physical plans
- Materialized views

- Optimization techniques for star queries with grouping and aggregations <:

GroupBy Optimization

PkAgent —» AName
FD AND GROUPINGS implies

groups by PkAgent, AName are the same groups as PkAgent

PkAgent=1 AName="Mario’

} PkAgent=1
PkAgent=2 AName="Lucia’
} PkAgent=2
PkAgent,AName SUM(M)
jl> PkAgent=3 AName='Anna’
} PkAgent=3
PkAgent=4 AName='John’
} PkAgent=4
PkAgent=5 AName='Mario'
} PkAgent=5

PkAgentYsumm) 2 ILpkagent,SM (PkAgent, ANameYSUM(M) As SM)

GroupBy Optimization, A. Albano

SIMPLE QUERY REWRITE OPT.: GROUPING AND PROJECTING

let B¢ X,and X — B

FE) = E This will be used

X F}{F () (XU{B}F}/F ()) later on this lesson
QUERY QUERY REWRITING

SELECT PKAgent, SUM(Qty) AS TQ SELECT PKAgent, SUM(Qty) AS TQ

FROM Order, Agent FROM Order, Agent

WHERE FKAgent = PKAgent WHERE FKAgent = PKAgent

GROUP BY PKAgent

MATERIALIZED VIEW V

SELECT PKAgent, AName, SUM(Qty) AS TQ
FROM Order, Agent
WHERE FKAgent = PKAgent

GROUP BY PKAgent, AName

GroupBy Optimization

GROUP BY PKAgent, AName

QUERY REWRITING
SELECT PKAgent, TQ
FROM V

More in detail in
the next lesson

SIMPLE QUERY REWRITE OPT.:
ANTICIPATING HAVING WRT GROUP BY

?
0s(xVF(E)) = x7r(0y(E))
Two cases to consider:
1) if ¢ depends only on X, i.e., ¢ = ¢y

O¢x (x7r(E)) = X’}’F(Jqﬁx (E))

QUERY QUERY REWRITING
SELECT PKAgent, SUM(Qty) AS TQ SELECT PKAgent, SUM(Qty) AS SQ
FROM Order, Agent FROM Order, Agent
WHERE FKAgent = PKAgent WHERE FKAgent = PKAgent
GROUP BY PKAgent, AName AND AName LIKE 'R%'
HAVING AName LIKE R%' GROUP BY PKAgent, AName

GroupBy Optimization

SIMPLE QUERY REWRITE OPT.:
ANTICIPATING HAVING WRT GROUP BY

?
0s(xVF(E)) = xVr(04(E))
Two cases to consider:

2) if ¢ depends onagg. F, i.e., ¢ = ¢f, rewriting is possible only in fwo cases

OMb > v(X’}’MAX(b) as Mb(E)) = XYMAX(b) AS Mb(Tb > W(£))
Omb < v(X’YMlN(b) AS mb(E)) = XY MIN(b) AS mb(Ub < V(E))

QUERY QUERY REWRITING
SELECT PKAgent, MAX(Qty) AS MQ SELECT PKAgent, MAX(Qty) AS MQ
FROM Order, Agent FROM Order, Agent
WHERE FKAgent = PKAgent WHERE FKAgent = PKAgent
GROUP BY PKAgent, AName AND Qty >= 10
HAVING MAX(Qty)>=10 GROUP BY PKAgent, AName

GroupBy Optimization

THE PRE-GROUPING PROBLEM

X'}’F(Rfk —p).)

» The standard way to evaluate queries with group-by is to perform the
joins first and then the group-by.

- To produce cheaper physical plans the optimizer should consider doing

the group-by before the join.

When the group-by can be pushed below the join on R ?
7
xVr(R 2, 5)=...((x7p(R)) 2, 5)

It is possible in 3 cases ...

GroupBy Optimization

FIRST CASE: EXAMPLE

SELECT FKAgent, SUM(Qty) AS SQ

FROM Order, Agent

WHERE FKAgent = PKAgent AND ACity = 'Pisa’
GROUP BY FKAgent;

FKAgentY SUM(Qty) AS SQty

O Acity="Pisa’

M
FKAgent = PKAgent

/\

Order Agent

GroupBy Optimization

Order

PKOrder
FKProduct

Agent

FKAgent
Price

Order

S —

X

FKAgent = PKAgent
/ \

O Acity="Pisa

Agent

PKAgent
AName
ACity
AState

FKAgentY SUM(Qty) AS SQty

FIRST CASE: EXAMPLE

SELECT FKAgent, SUM(Qty) AS SQ

FROM Order, Agent

WHERE FKAgent = PKAgent AND ACity = 'Pisa’
GROUP BY FKAgent;

FKAgent! SUM(Qty) AS SQty

XM
FKAgent = PKAgent

/\

Order O acity="Pisa

Agent

GroupBy Optimization

Order

PKOrder
FKProduct

Agent

FKAgent
Price

) —

PKAgent
AName
ACity
AState

P
FKAgent, SQty

FKAgent = PKAgent

/\

FKAgent! SUM(Qty) AS SQty

Order

O Acity="Pisa’

Agent

FIRST CASE: THE INVARIANT GROUPING RULE

Proposition 1. R has the invariant grouping property

chXuF
XYF ‘
| _ v
X i = px
): pk\
R p X U {fi} - AGS)F

‘ mﬂ'lbums in S}
if the following conditions hold:

1. (X — fk)’rhe foreign key of R is determined by X in Rf M s
k = Pk

2. Each aggregate function in F uses only attributes from R.

GroupBy Optimization 15

EXAMPLES

Order Acent
PKOrder 9
PKAgent
FKProduct | AN
SELECT PKAgent, ACity, SUM(Qty) AS SQ FKAgent ACity
Price
FROM Order, Agent AState
‘ Qty
WHERE FKAgent = PKAgent

GROUP BY PKAgent, ACity:;

GroupBy Optimization

SELECT AName, SUM(Qty) AS SQ

FROM Order, Agent

WHERE FKAgent = PKAgent AND ACity = 'Pisa’
GROUP BY AName;

16

EXAMPLE NOT WORKING

Product Order Aaent
PKProduct PKOrder pKAggent
PName FKProduct -~ AName
PUnitPrice FKAgent :

\ ACity
PCost Price AState
PCategory Qty

PCategory! SUM(Qty) AS SQt
SELECT PCategory, SUM(Qty) AS SQ gory (Qty) Rty

FROM Order, Product ‘
WHERE FKProduct = PKProduct M
GROUP BY PCategory: FKProduct = PKProduct

T

Order Product
NO PRE-GROUPING WITH THE INVARIANT GROUPING RULE

Condition 1 is false, Condition 2 is true

GroupBy Optimization 17

FkProduct — PCategory
FD AND GROUPINGS implies

groups by FkProduct are included in the groups by PCategory

FkProduct=1

____ PCategory="food'

FkProduct=2

FkProduct? SUM(M)

> FkProduct=3 .

FkProduct=4

~ PCategory='drink’

|

FkProduct=5
PCategory="other"

PCategory’ SUM(SM) (FkProduct/SUM(M) As SM)

PCategory’ SUM(M) ¢

GroupBy Optimization, A. Albano 18

QUERY REWRITE OPT.: DECOMPOSABLE AGGREGATE FUNCTIONS

An aggregate function f is called decomposable if there is a local aggregate function fi
and a global aggregate function fg, such that for each multiset V and for any partition
of it {V1,V2} we have

f(VL U Va) = fo({fi(Vh), f1(Va)})

For example MIN, MAX, SUM and COUNT are decomposable.

« MIN(V1 U V2) = MIN{MIN(V1), MIN(V2)})

- MAX(V1 U V2) = MAXEMAX(V1), MAX(V2)})

- SUM(V1 U V2) = SUM{SUM(V1), SUM(V2)})

. COUNT(V1 U V2) = SUM{COUNT(V1), COUNT(V2)})

And AVG ?
AVG(V1 U V2) = SUM{SUM(V1), SUM(V2)}) / SUM({COUNT(V1), COUNT(V2)})

GroupBy Optimization 20

SECOND CASE: EXAMPLE

PCategory¥ SUM(Qty) AS SQt Product Order

ategory (Qty) Qty PKProduct PKOrder pKAA g:,:;t
PName ’ FKProduct . Eng];—
PUnitPrice FKAgent ACi

M PCost Price AS 4
FKProduct = PKProduct PCategory Qty | fale
Order Product PCategory! SUM(SQty) AS SQty
PCa‘regor'yy SUM(SQty) AS SQty b
‘ TT"Ppcategory roductSQty
Pcategory, F KProductY SUM(Qty) AS SQty X

‘ FKProduct = PKProduct

T

X FKProductY SUM(Qty) AS sQty Product
FKProduct = PKProduct ‘

T

Order Product Order

GroupBy Optimization 23

SECOND CASE: DOUBLE GROUPING

D]
Definition. In x7 F(R C; S) R has the early partial aggregation
property if all the aggregate functions are decomposable and they use
attributes of R.

Proposition 1. If R does not have the invariant grouping property
because Condition 1 does not hold, but it has the early partial
aggregation property, then:

<]

X’}’F(szks) = X7VF, ((X U {fK} - A(S) TF, (R))szpks)

GroupBy Optimization

24

EXAMPLE NOT WORKING

Product

Order

PKProduct
PName
PUnitPrice
PCost
PCategory

PKOrder
FKProduct

Agent
PKAgent

FKAgent
Price

L —

SELECT FKProduct, SUM(PCost) AS SC

FROM Order, Product

WHERE FKProduct = PKProduct

GROUP BY FKProduct;

NO PRE-GROUPING WITH THE RULES

(Condition 1 is true, Condition 2 is false)
(Condition 1 is true, Condition 2 is false)

INVARIANT GROUPING
AND EARLY PARTIAL AGG.

GroupBy Optimization

Y

AName
ACity
AState

FKProductY SUM(PCost) AS SC

M
FKProduct = PKProduct

T

Order Product

25

ATTENTION

FKProductY SUM(PCost) AS SC

Product

Product Order Agent M
PKProduct PKQrder PKAgent FKProduct = PKProduct
PName FKProduct N FRAgen:

PUnitPrice FKAgent AANameC. T
. ity
PCost Price ASt Order
ate
PCategory gy_
FKProduct — PCost
FKProduct PKProduct |PName PCost
1 1 P1 100
1 1 P1 100
2 2 P2 200
2 2 P2 200

6rouping on FKProduct: all the records of a group have the same

GroupBy Optimization

value of PCost

26

AGGREGATION FUNCTIONS OF REPEATED VALUES

SUM(T) aﬁpl ied to a bag of repeated values (T = {v, v, ..., v}) with Tcount
elements have the following property:

SUM(T) =v x Tcount

MIN(T) |
MAX(T) |
AVG(T)

Il
<

COUNT (T) = Tcount

GroupBy Optimization

28

ANOTHER EQUIVALENCE RULE FKProductY S‘UM(PCosT) AS SC

Since grouping on FKProduct the records of a group M
have the same value for PCost, we can compufe the FKProduct = PKProduct
aggregation function SUM in another way T

Order Product

Let B ¢ X,and X — B,and F = SUM(B)

XYSUM(B) AS sg(E) =

b
T X U{Bx GBcount AS SB}(XU{B}’}’COUNT(*) AS GBcount (&)

GroupBy Optimization 29

THIRD CASE: THE GROUPING AND COUNTING RULE

b
FKProductY SUM(PCost) AS SC TU"FKProduct, Pcost*GBCount AS SC
X _ FKProduct, PCostY COUNT(*) AS 6BCount
FKProduct = PKProduct —
Or'der-/ \Woducf X
FKProduct = PKProduct
ch * / \
FKProduct, Pco‘s‘r GBCount AS SC Order Product
M

— FKProduct = PKProduct

FKProductY COUNT(*) AS GBCount Product

Order

GroupBy Optimization

30

EXERCISE

Product

PKProduct
PName

Order

PKOrder
FKProduct

PUnitPrice
PCost

PCatego[z

SELECT PKProduct, (SUM(Price) - SUM(PCost)) AS M

Agent

FKAgent
Price

Y —

FROM Order, Product

WHERE FKProduct = PKProduct

GROUP BY PKProduct;

GroupBy Optimization

PKAgent

ACity
AState

31

	Slide 1: TODAY: RELATIONAL DBMS EXTENSIONS FOR DW
	Slide 2: FD AND GROUPINGS
	Slide 3
	Slide 4
	Slide 5
	Slide 8: THE PRE-GROUPING PROBLEM
	Slide 13: FIRST CASE: EXAMPLE
	Slide 14: FIRST CASE: EXAMPLE
	Slide 15: FIRST CASE: THE INVARIANT GROUPING RULE
	Slide 16: EXAMPLES
	Slide 17: EXAMPLE NOT WORKING
	Slide 18: FD AND GROUPINGS
	Slide 20
	Slide 23: SECOND CASE: EXAMPLE
	Slide 24: SECOND CASE: DOUBLE GROUPING
	Slide 25: EXAMPLE NOT WORKING
	Slide 26: ATTENTION
	Slide 28: AGGREGATION FUNCTIONS OF REPEATED VALUES
	Slide 29: ANOTHER EQUIVALENCE RULE
	Slide 30
	Slide 31: EXERCISE

