RELATIONAL DBMS EXTENSIONS FOR DW

- SQL extensions
- Index and storage structures
- Star query physical plans
- Materialized views

The views in relational DBMS: derived relation defined in terms of base (stored) relations.

CREATE VIEW TotalSalesByStore ASSELECTStore, Product, SUM(m) AS TmFROMSalesGROUP BYStore, Product;

Materialized views: A view can be materialized by storing the result of the view in the DB.

CREATE MATERIALIZED VIEW TotalSalesByStore ASSELECTStore, Product, SUM(m) AS TmFROMSalesGROUP BYStore, Product;Standard/Oracle, in SQL Server
named 'Indexed Views'

WHY TO MATERIALIZE VIEWS?

Sales(Product, Store, Date, m) with 1M facts but only 1K distinct Stores

SELECT FROM	Store, Product, SUM(m) AS Tm Sales	Let us materialize
GROUP BY	Store, Product;	the result as V

Consider the query Q SELECT Store, SUM(m) AS Tm FROM Sales -- scan of 1M rows GROUP BY Store;

The query Q can be rewritten as the more efficient

SELECT	Store, SUM(Tm) AS Tm
FROM	V scan of 1K rows
GROUP BY	Store;

- Given a query workload Q (type and frequency of queries), how to select the views to materialized?
- How the system rewrites a query to use materialized views?
 - We'll see in future lessons
- How to update materialized views if the database is updated?
 - Incremental view maintainance: overhead to updates/inserts
 - Recomputation: applies to DW (better than incremental view maintainance):
 - 1. Drop materialized views
 - 2. ETL
 - 3. Re-create materialized views

APPROACH FOR SELECTION OF VIEWS TO MATERIALIZE

ASSUMPTIONS AND AN EXAMPLE OF THE DW LATTICE

The fact table **F** has **n** dimensions, without attributes, and a measure **m**

ASSUMPTIONS AND AN EXAMPLE OF THE DW LATTICE

The fact table **F** has **n** dimensions, without attributes, and a measure **m**

FROM THE LATTICE OF CUBOIDS TO THE LATTICE OF VIEWS

How is the size of a view estimated?

Analytic, sampling, Pareto approaches (see lecture notes)

WHY VIEWS ARE MATERIALIZED?

Business question: Total sales by Product.

Case 1: data (PSD) = 6M

Case 2: if (PS) is materialized = 0.8M

Case 3: if (P) is materialized = 0.2M

WHY NOT TO MATERIALIZE ALL VIEWS

Full materialization: ~19M record

Partial materialization:

- include: PSD, the DW
- useless: PD, SD total: ~ 7M

- The query workload (used to evaluate quality of a set of materialized views) is the set of queries in the DW lattice of views.
- The candidate views v are the possible DW lattice of views different from the root F (which is already materialized), defined as: $\chi\gamma_{SUM(m) AS m}$ (F).
- The execution cost of a query q using the view v is |v|, the number of records of v, which is assumed to be known (estimated)
- Notice: q can be rewritten using v (written: $q \le v$) iff $g(q) \subseteq g(v)$ ie g(q) is a descendant of g(v) in the lattice

THE SELECTION OF MATERIALIZED VIEWS

Let Q be the query workload (Q = { queries in the lattice of views }).

Let M be a set of materialized views.

Let C(q, M) the execution cost of $q \in Q$ using the best view (wrt q) from M.

The goal is to select the set of views M which minimizes the overall execution cost of the query workload Q, i.e., the quantity:

 $\tau(M) = \sum_{q \in Q} C(q, M)$

The optimization problem has been proved to be NP-complete. An approximate greedy algorithm has been proposed:

Initially M = { F } only the fact table is materialized.

Each iteration calculates the **benefit** of the remaining candidate views and selects for materialization the one with the maximum benefit.

BENEFIT OF A VIEW

$$\tau(M) = \sum_{q \in Q} C(q, M)$$

Informally, the **benefit** of a view not yet materialized is the produced reduction of the execution cost of query workload.

Let M be a set of materialized views. The benefit B(v, M) of a view $v \notin M$ is defined as: $B(v, M) = \tau(M) - \tau(M \cup \{v\})$

Consider q such that $q \leq v$ does <u>not</u> hold:

 \Box C(q, M \cup {v}) = C(q, M), hence benefit for q is zero.

PSD 1000

Consider each $q \leq v$:

a) Let \mathbf{u}_q be the view with least cost in M such that $\mathbf{q} \leq \mathbf{u}_q$, i.e., $|\mathbf{u}_q| = C(\mathbf{q}, M)$ b) $C(\mathbf{q}, M \cup \{\mathbf{v}\}) = \min\{|\mathbf{v}|, |\mathbf{u}_q|\}$ because either \mathbf{v} is better than \mathbf{u}_q or not. If $|\mathbf{v}| < |\mathbf{u}_q|$, then $C(\mathbf{q}, M) - C(\mathbf{q}, M \cup \{\mathbf{v}\}) = |\mathbf{u}_q| - |\mathbf{v}|$, otherwise it is 0. In general, $C(\mathbf{q}, M) - C(\mathbf{q}, M \cup \{\mathbf{v}\}) = \max\{0, |\mathbf{u}_q| - |\mathbf{v}|\}$

In summary:
$$B(v, M) = \sum_{q \leq v} \max\{0, |u_q| - |v|\}$$

() 1

EXAMPLE

$$B(\mathbf{v}, \mathbf{M}) = \sum_{q \leq \mathbf{v}} \max\{0, |\mathbf{u}_q| - |\mathbf{v}|\}$$

Solution when selecting k=3 materialized views M = {PSD, PD, S, D}

THE HRU ALGORITHM

Constraint:

There are only k candidate views to materialize, different from the top view

Algorithm HRU(k)

% Let
$$v_1$$
 be the lattice root
 $M = \{v_1\};$
 $N = V - M;$
for $i = 1$ to k
 $\{v = \text{the view in } N, \text{ such that } B(v, M) \text{ the maximum};$
 $M = M \cup \{v\};$
 $N = N - \{v\} \};$
return $M;$

HRU DOES NOT FIND THE BEST SOLUTION

First Choice	Second Choice
B = 100+ 40*100 = 4100	B = 100+20*100 = 2100
C = 101 + 40*101 = 4141	
D = 100 + 40*100 = 4100	D = 100+20*100 = 2100

GreedyOptimal ChoicePick B and D $M = \{A, C, B\}$ $M = \{A, B, D\}$ Bgreedy = 6241Bopt = (100+100*40)*2= 8200

 $B_{greedy}/B_{opt} = 0.76$

• In general, the algorithm does not find the optimal solution, but the authors have shown that it provides good results and the following interesting properties hold:

For each lattice, let B_{greedy} be the **benefit** of k views selected by the algorithm **greedy** and B_{opt} be the **benefit** of the optimum choice of k views, then B_{greedy} can never be less than 0,63 * B_{opt} .

HRU has a time complexity $O(km^2)$, where k is the number of views selected and m the number of lattice views. This is polinomial with the number m of views, but exponential with the number of dimensions n $O(km^2) = O(k2^{2n})$

The exponential complexity of HRU depends on two choices:

At each iteration, it considers all remaining views on the entire lattice that have not yet materialized.

At each iteration, it considers for each v all its descendants.

An algorithm with **polynomial time complexity on the number of dimensions** is the **Polynomial Greedy Algorithm**, **PGA** (see lecture notes).

• Queries of the workload are not equally likely.

Algorithm for a particular workload

 Instead of having a limit on the number of views k that can be materialized, there is an upper bound on the total storage space S that the set of materialized views M can occupy.

Algorithm PBS (Pick By Size)

ALGORITHM WITH DIMENSIONAL ATTRIBUTES

Hypothetic: Consider the join of F with all the dimensions.

It can be simplified:

- The root is F

- If **a** -> **b** a view with **a** has the same groups of one on **ab**.

WHAT ABOUT MORE COMPLEX QUERIES?

SELECT FROM WHERE

<Grouping attributes>, SUM(m) AS m <Fact Table> <Condition on some attributes> **GROUP BY** <Grouping attributes>;

q defines a slice of a cuboid, i.e., $q = \chi \gamma_{SUM(m) ASm} (\sigma_{C}(F))$.

Eg., $q = {}_{P}\gamma_{SUM(m)ASm}(\sigma_{S=1}(F))$

 $q \prec v$ for a candidate view $v = {}_{Z}\gamma_{SUM(m)ASm}(F)$ when $X \cup var(C) \subseteq Z$.

How? Eg., $v = P_{SUM(m)} A_{Sm}(F) \rightarrow q = P_{SUM(m)} A_{Sm}(\sigma_{S=1}(v))$

MATERIALIZED VIEW SELECTION TECHNIQUES

