THE BASICS OF QUERY PROCESSING

A DW designer must understand the principles and methods of query processing in
order to produce better BI applications.

SQL is a declarative rather than a procedural language.

It describes WHAT we are looking for, but not how to get it.

Relational Algebra describes HOW to get results
with “logical query plan” of relational operators.

A naive way to evaluate an expression would be to compute the results of the
relational operators directly as specified.

Query Plans

DBMS ARCHITECTURE

DBMS
RELATIONAL ENGINE
QUERY MANAGER
saL
COMMAND — DDL QUERY CATALOG
MANAGER OPTIMIZER MANAGER
ACCESS PLAN
, MANAGER
Details at the

'‘Advanced Databases' —t—
course (2" semester)

STORAGE ENGINE

ACCESS
METHOD |
MANAGER

STORAGE
CONCURRENCY
MANAGER =——=| STRUCTURES

MANAGER TRANSACTION
p— MANAGER

DATA, INDEXES MAMNAGER -
CATALOG, LOG

i |

M
v

PERMANENT

MEMORY E—
PERMANENT MANAGER

MEMORY

Query Plans 2

THE BASICS OF QUERY PROCESSING

The query optimizer chooses an appropriate algorithm to execute the query
expressed as "physical query plan”, composed of a few basic physical operators,
which implement an algorithm to compute each relational operator.

Several alternative implementation techniques exist for each relational operator.

Query Plans 3

STORAGE STRUCTURES and RIDs

For simplicity, let us assume that:

A table is stored in a Heap File
a file for each table, with tuples stored in the insertion order

When a record is stored in a database, it is identified

internally by a record identifier (RID).

A RID has the property

that identify the disk address of the page containing the record.

Table StudCode | City | BirthYear
100 MI 2002
101 PT 2000
102 PT 2001
104 FI 2000
Indexes can be defined on attributes of a table. 00 | M) %
107 PI 2002

Query Plans

WHAT IS AN INDEX?

An index is a mapping of attribute(s) (key) values to RID of records.

p
Definition. An index I on an attribute K of a relational table F is an

ordered table I(K, RID), with (|I| = |F|). A tuple of the index is a pair
(K :=ki, RID := ri), where ki is a (key) value for a record, and riis a
reference (RID) to the corresponding record.

N

Query Plans

EXAMPLES

Students

Indexes

Query Plans

CREATE UNIQUE INDEX PK_StudCode
ON Students (StudCode)

CREATE INDEX S_BirthYear

ON Students (BirthYear)

RID | StudCode | City BirthYear
1 100 MI 2002
2 101 PI 2000 SELECT *
3 102 P 2001 FROM Students
4 104 FI 2000 WHERE BirthYear = 2001
5 106 MI 2000
6 107 PI 2002
StudCode | RID BirthYear RID

100 1 2000 2

101 2 2000 4

102 3 2000 5

104 4 2001 3

106 5 2002 1

107 6 2002 6
Index on StudCode Index on BirthYear

QUERY EXECUTION STEPS

SELECT Name
FROM Students S, Exams E

WHERE S.StudCode = E.Candidate AND City="PI' AND Grade>25

Name

O City = ‘PI’ A Grade >25

>
S.StudCode = E.Candidate

Students S Exams E

LOGICAL PLAN

Query Plans

Project
({Name})

NestedLoop
(5.5tudCode=E.Candidate)

IndexFilter Filter
(Students IdxP, City = 'Pi') (Grade > 25)
TableScan
(Exams)

PHYSICAL (ACCESS) PLAN

PHYSICAL QUERY PLAN EXECUTION project
Name

NestedLoop
(5.5tudCode=E.Candidate)

What is the result of a physical operator? |

IndexFilter Filter
Materialization vs plpelmmg‘> (Students,IdxP, City = 'Pi") (Grade > 25)
TableScan
(Exams)

Each operator is typically implemented as an iterator using a ‘pull’ interface: when
an operator is ‘pulled’ for the next output record, it ‘pulls’ on its inputs and

computes them.

The interface provide methods open, next, isDone, and close.

Query Plans 8

QUERY EXECUTION

SQL COMMAND Q ANALYSIS
SQLCommand parseTree = Parser.parseStatement (Q)

COMMAND CHECK
Type type = parseTree.check()

QUERY OPTIMIZATION
Value accessPlan = parseTree.Optimize ()

ACCESS PLAN EXECUTION

accessPlan.open () ;
while not accessPlan.isDone () :
Record rec = accessPlan.next ()

print (rec)
accessPlan.close ()

Query Plans

IMPLEMENTATION OF RELATIONAL OPERATIONS

We will consider how to implement:
* Projection
- Selection (Restriction)
* Group by

- Join

Java Relational System (JRS) physical operators

Query Plans

10

PHYSICAL OPERATORS FOR TABLES AND SORT

Operators for R :

TableScan (R): to scan R;

SortScan (R, {A}): to scan R sorted on the {A};

Operator to sort (t):

Sort (O, {A}): to sort records of the operand O on the {A};

Query Plans

11

EXAMPLE

LOGICAL PLAN

SELECT *
FROM R:

TableScan
> (R)

PHYSICAL PLAN

Query Plans

SELECT *

FROM R

ORDER BY A ;
Sort
({A}D)

SortScan ‘

> (R, {A}) > Tab%eR?can

12

PHYSICAL OPERATORS FOR & , miP

Project (O, {A;}): to project the records of O without duplicates elimination;

Distinct (O): to eliminate duplicated from sorted records of O;

HashDistinct(O): to eliminate duplicated from records of O;

Query Plans

13

EXAMPLE

SELECT A
b FROM R: Project
T (CA)
|
R ::) TableScan
(R)
SELECT DISTINCT A . L.
o FROM R: DIS'||'II‘|C1'
Distinct ?{o X;)
b | |
U4 Project
j‘> {A}D i Pr‘o ect
| | ({A})
SortScan |
(R, {A) Tab(Le)Sccm

Query Plans 14

PHYSICAL OPERATORS FOR o

Filter (O,y): selection of the records of O;

The selection operator applied to a relation can be implemented with an index.

IndexFilter (R, Idx, y): selection with an index Idx on the y attributes of the
records of R;

= RidIndexFilter(Idx, y): to retrieve the RIDs from an index
+ TableAccess(O, R), to retrieve records from R using the RID in O;

Query Plans

15

1) PHYSICAL PLAN EXAMPLE: SFW

SELECT A
FROM R
WHERE A BETWEEN 50 AND 100;

T Project

’ ({/lx})
i Filter

Oy (v)

|
TableScan
R (R)
LOGICAL PLAN PHYSICAL PLAN

v = A BETWEEN 50 AND 100

Query Plans

16

2) PHYSICAL PLAN EXAMPLE: SFW WITH INDEX

SELECT *
FROM R

' A
WHERE A BETWEEN 50 AND 100: Tdx an index on

)7 IndexFilter

j> (R, Tdx, 1)

LOGICAL PLAN PHYSICAL PLAN

v = A BETWEEN 50 AND 100

Query Plans

17

EXERCISES

SELECT A, B Idx an index on A
FROM R

WHERE (A BETWEEN 50 AND 100) AND B > 20;

SELECT A, B Idx an index on A, B
FROM R

WHERE (A BETWEEN 50 AND 100) AND B > 20

ORDER BY A;

Query Plans

18

PHYSICAL OPERATORS FOR JOIN

SELECT *
FROM Students S, Exams E

WHERE S.StudCode = E.Candidate

Simple, but it must be carefully optimized :

(Students x Exams) is large; so

Query Plans

|
X

O studCode=Candidate

|
I
Students

is inefficient.

|
Exams

20

NESTED LOOPS

Query Plans

foreach rin R do
foreach sinS do
if r.r1 = s.s1 then
add <r, s> to result

R(rl, r2) > S(si, s2)

ri=sl

1
/4]

-
=k
-
[]
45
—y
71
1]

0|] 3| B
0o R B | B

| b | 0D 0| R R | B
0o |lal|lo|o|o |6 |o

21

EXAMPLE: JOIN PHYSICAL PLAN

NestedLoop (Og,O:, v ;): join with nested loop and y ; as join condition;

SELECT R.C, SD
FROM R, S
WHERE R.A = S.B;

b
TV resd

—

(R)

LOGICAL PLAN

Query Plans

TableScan

Project
({R.C, 5.D})
|
NestedLoop
(¥s)
| |
TableScan
(S)

PHYSICAL PLAN

22

ANOTHER ALGORITHM

Index Nested loop : R(rl, r2) pq S(si, s2)

ri=si
Hyp: There is an index on the join column sl of the internal relation (S)

N
foreach r in R do
\ foreach sin S where si=r.ri do

add <r, s> to result
\

w

[r]
-t

Sa

Index on Sy

5 R =

r Search /4?
T (sy=2)
}

Lol b | COf OO | B | B | B
o B | g | R fE | B

Query Plans

EXAMPLE: JOIN PHYSICAL PLAN WITH AN INDEX

SELECT R.C, SD

FROM R, S
WHERE R.A = S.B; Idx an index on S.B
b Project
T reso ({R.C,ls.D})
j‘> IndexNestedLoop
>y, (¥5)
| |
I | | |
. = TableScan IndexFilter
(R) (S, Idx, S.B=R.A)
LOGICAL PLAN PHYSICAL PLAN

OTHER JOIN ALGORITHMS EXIST: MERGEJOIN, HASHJOIN,...
Query Plans 24

PHYSICAL OPERATORS FOR ™,

foreachr in R do
foreach sin S where si=r.ri do
add <r, s> to result

IndexNestedLoop (O, O;, v ;): join with index nested loop. The inner operand O; is
an IndexFilter(R, Idx, v ;) or Filter (O, v ;) with O an IndexFilter(R, Idx, v).

Query Plans

EXAMPLE: JOIN PHYSICAL PLAN WITH AN INDEX

SELECT R.C, SD
FROM R, S
WHERE R.A = S.B AND S.D <= 5; Idx an index on S.B

b Project
TUresp ({R.C, |S.D})
j‘> IndexNestedLoop
>y, (¥7)
| |
| | | |
> Op 5 TableScan Filter
| (R) (S.D|<= 5)
S IndexFilter

(S, Idx, S.B=R.A)

LOGICALIBLAN PHYSICAL PLAN

Query Plans

26

PHYSICAL OPERATORS FOR vy

GroupBy (O, {A}, {f.}): to group the sorted records of O on the {A} using the
aggregation function in {f;}.

» The operator returns records with attributes the {A} and the functions in {f}.

» The records of O are sorted on the {A};

HashGroupBy (O, {A}, {f})

Query Plans

27

PHYSICAL PLAN WITH GROUP BY

b
TU A sum@)
|

cSCOUNT(’*) >1

AySUM(B), COUNT(*)

O 4 eTWEEN 50 AND 100

|
R

LOGICAL PLAN

Query Plans

SELECT A, SUM(B)
FROM R

WHERE A BETWEEN 50 AND 100 Project

GROUP BY A
HAVING COUNT(*)> 1;

—

(A, SUlN\(B)})
Filter
(COUNT(*) > 1)
Gr'oulpBy
({A}, {SUM(B),COUNT(*)H

Sclr"r
({Al})

Filter
(A BETWEEN 50 AND 100)

TableScan
(R)

PHYSICAL PLAN

28

Exercises from lesson 14: look at JRS physical query plans

» Using JRS on the database TestStar, write SQL queries and check their Logical
Query Plans for:

InvoiceLines

Products
[Countries FklnvoiceNo <|2:::;<(|PK>> - PkProduct int <PK>
PkCountry :string <PK> _ _ . FkProduct | poq,ctiD :string <PK1>
. . LineNo iint <KPK> .
Nation :string . ProductName :string
, . FkProduct ;int <FK(Products)> :
Continent :string : Category :string
Qty lint oo .
; . UnitPrice lint
Price lint
FkCountry
FkInvoiceNo
Customers :
Invoices
PkCustomer :mt. il FkCustomer| PklnvoiceNo :int <PK>
FkCountry :string .
<FK(Countries)> FkCustomer :int
-ountries < FK(Customers)>
CustomerName :string
. Date :date
CustomerType :string

1. Number of distinct Customers by Product

SELECT FkProduct, COUNT(DISTINCT FkCustomer) AS NCustomer
FROM Invoicelines, Invoices

WHERE FkInvoiceNo=PkInvoiceNo
GROUP BY FkProduct;

Query Plans

Physical Query Plans in Oracle

- ORACLE: EXPLAIN PLAN

SELECT /»+ GATHER_PLAN_STATISTICS */ count(*) from A, B, C WHERE
A.STATUS = B.STATUS AND A.B_ID = B.ID AND B.STATUS = "OPEN" AND
B.ID = C.B_ID AND C.STATUS = "OPEN’

Plan hash value: 2966481601

| SORT AGGREGATE |
| HASH JOIN |
| HASH JOIN |
| TABLE ACCESS BY INDEX ROWID|
| INDEX RANGE SCAN |
| TABLE ACCESS FULL |
| INDEX FAST FULL SCAN |

Query Plans

30

Physical Query Plans in SQL Server (using Management Studio)

P Execute v &S 57 5o WY m@@lnﬂl

I SQLQuery1.sql - apa...TICA\ruggieri (68))* = X
—-ISELECT customer_id, the_year, SUM(store_sales) AS TotalSales
FROM sales fact S, time by day T

WHERE S.time_id = T.time_id and month_of_year=ﬂ

GROUP BY customer_id, the_year

hill
hﬁ
I

Y% -

=¥ Messages & " Execution plan

Query 1: Query cost (relative to the batch): 100%
SELECT customer 1id, the vyear, SUM(store sales) AS TotalsS:
Missing Index (Impact 87.2038): CREATE NONCLUSTERED INDE:

T-El o @I

SELECT Hash Match Hash Match Clustered Inde..
Cost: 0 % (Aggregate) (Inner Join) [time by day]...
= . Cost: 12 % Cost: 45 % Cost: 0 %

|
by
Clustered Inde..

[sales fact].[..
Cost: 43 %

Query Plans

	Slide 1: THE BASICS OF QUERY PROCESSING
	Slide 2: DBMS ARCHITECTURE
	Slide 3: THE BASICS OF QUERY PROCESSING
	Slide 4: STORAGE STRUCTURES and RIDs
	Slide 5: WHAT IS AN INDEX?
	Slide 6: EXAMPLES
	Slide 7: QUERY EXECUTION STEPS
	Slide 8: PHYSICAL QUERY PLAN EXECUTION
	Slide 9: QUERY EXECUTION
	Slide 10: IMPLEMENTATION OF RELATIONAL OPERATIONS
	Slide 11: PHYSICAL OPERATORS FOR TABLES AND SORT
	Slide 12: EXAMPLE
	Slide 13: PHYSICAL OPERATORS FOR δ , b
	Slide 14: EXAMPLE
	Slide 15: PHYSICAL OPERATORS FOR 
	Slide 16: 1) PHYSICAL PLAN EXAMPLE: SFW
	Slide 17: 2) PHYSICAL PLAN EXAMPLE: SFW WITH INDEX
	Slide 18: EXERCISES
	Slide 20: PHYSICAL OPERATORS FOR JOIN
	Slide 21: NESTED LOOPS
	Slide 22: EXAMPLE: JOIN PHYSICAL PLAN
	Slide 23: ANOTHER ALGORITHM
	Slide 24: EXAMPLE: JOIN PHYSICAL PLAN WITH AN INDEX
	Slide 25: PHYSICAL OPERATORS FOR
	Slide 26: EXAMPLE: JOIN PHYSICAL PLAN WITH AN INDEX
	Slide 27: PHYSICAL OPERATORS FOR 
	Slide 28: PHYSICAL PLAN WITH GROUP BY
	Slide 29: Exercises from lesson 14: look at JRS physical query plans
	Slide 30: Physical Query Plans in Oracle
	Slide 31: Physical Query Plans in SQL Server (using Management Studio)

