
Query Plans, A. Albano 1

THE BASICS OF QUERY PROCESSING

A DW designer must understand the principles and methods of query processing in
order to produce better BI applications.

It describes WHAT we are looking for, but not how to get it.

A naive way to evaluate an expression would be to compute the results of the
relational operators directly as specified.

SQL is a declarative rather than a procedural language.

Relational Algebra describes HOW to get results
 with “logical query plan” of relational operators.

Query Plans, A. Albano 2

DBMS ARCHITECTURE

Details at the
‘Advanced Databases’
course (2nd semester)

Query Plans, A. Albano 3

THE BASICS OF QUERY PROCESSING

The query optimizer chooses an appropriate algorithm to execute the query
expressed as “physical query plan’’, composed of a few basic physical operators,
which implement an algorithm to compute each relational operator.

Several alternative implementation techniques exist for each relational operator.

Query Plans, A. Albano 4

STORAGE STRUCTURES and RIDs

Table RID StudCode City BirthYear

1 100 MI 2002

2 101 PI 2000

3 102 PI 2001

4 104 FI 2000

5 106 MI 2000

6 107 PI 2002

When a record is stored in a database, it is identified

internally by a record identifier (RID).

A RID has the property

that identify the disk address of the page containing the record.

Indexes can be defined on attributes of a table.

For simplicity, let us assume that:

A table is stored in a Heap File
 a file for each table, with tuples stored in the insertion order

Query Plans, A. Albano 5

WHAT IS AN INDEX?

Definition. An index I on an attribute K of a relational table F is an
ordered table I(K, RID), with (|I| = |F|). A tuple of the index is a pair
(K :=ki, RID := ri), where ki is a (key) value for a record, and ri is a
reference (RID) to the corresponding record.

An index is a mapping of attribute(s) (key) values to RID of records.

Query Plans, A. Albano 6

EXAMPLES

Index on StudCode Index on BirthYear

Students

Indexes

RID StudCode City BirthYear

1 100 MI 2002

2 101 PI 2000

3 102 PI 2001

4 104 FI 2000

5 106 MI 2000

6 107 PI 2002

StudCode RID

100 1

101 2

102 3

104 4

106 5

107 6

BirthYear RID

2000 2

2000 4

2000 5

2001 3

2002 1

2002 6

SELECT *
FROM Students
WHERE BirthYear = 2001

CREATE UNIQUE INDEX PK_StudCode
ON Students (StudCode)
CREATE INDEX S_BirthYear
ON Students (BirthYear)

Query Plans, A. Albano 7

QUERY EXECUTION STEPS

SELECT Name
FROM Students S, Exams E
WHERE S.StudCode = E.Candidate AND City=‘PI’ AND Grade>25

LOGICAL PLAN PHYSICAL (ACCESS) PLAN

Project
({Name})

NestedLoop
(S.StudCode=E.Candidate)

Filter
(Grade > 25)

IndexFilter
(Students,IdxP, City = ‘Pi’)

TableScan
 (Exams)Students S Exams E

S.StudCode = E.Candidate

 City = ‘PI’  Grade >25

Name
b



Query Plans, A. Albano 8

PHYSICAL QUERY PLAN EXECUTION

Each operator is typically implemented as an iterator using a ‘pull’ interface: when

an operator is ‘pulled’ for the next output record, it ‘pulls’ on its inputs and

computes them.

The interface provide methods open, next, isDone, and close.

What is the result of a physical operator?

Materialization vs pipelining?

Project
({Name})

NestedLoop
(S.StudCode=E.Candidate)

Filter
(Grade > 25)

IndexFilter
(Students,IdxP, City = ‘Pi’)

TableScan
 (Exams)

Query Plans, A. Albano 9

QUERY EXECUTION

SQL COMMAND Q ANALYSIS

SQLCommand parseTree = Parser.parseStatement(Q)

COMMAND CHECK

Type type = parseTree.check()

QUERY OPTIMIZATION

Value accessPlan = parseTree.Optimize()

ACCESS PLAN EXECUTION

accessPlan.open();

while not accessPlan.isDone():

 Record rec = accessPlan.next()

 print(rec)

accessPlan.close()

Query Plans, A. Albano 10

IMPLEMENTATION OF RELATIONAL OPERATIONS

We will consider how to implement:

• Projection

• Selection (Restriction)

• Group by

• Join

Java Relational System (JRS) physical operators

Query Plans, A. Albano 11

PHYSICAL OPERATORS FOR TABLES AND SORT

Operator to sort ():

Sort (O, {Ai}): to sort records of the operand O on the {Ai};

Operators for R :

TableScan (R): to scan R;

SortScan (R, {Ai}): to scan R sorted on the {Ai};

Query Plans, A. Albano 12

EXAMPLE

SELECT *
FROM R ;

SELECT *
FROM R
ORDER BY A ;

R
TableScan
 (R)

 {A}

R

SortScan
 (R, {A})

TableScan
 (R)

Sort
({A})

LOGICAL PLAN PHYSICAL PLAN

Query Plans, A. Albano 13

PHYSICAL OPERATORS FOR δ , b

HashDistinct(O): to eliminate duplicated from records of O;

Distinct (O): to eliminate duplicated from sorted records of O;

Project (O, {Ai}): to project the records of O without duplicates elimination;

Query Plans, A. Albano 14

EXAMPLE

Project
 ({A})

TableScan
 (R)

SELECT A
FROM R ;

R

b

A

Project
 ({A})

SortScan
 (R, {A})

SELECT DISTINCT A
FROM R ;

Distinct

Project
 ({A})

TableScan
 (R)

Distinct

Sort
 ({A})

R

b

A

δ

Query Plans, A. Albano 15

PHYSICAL OPERATORS FOR 

Filter (O,): selection of the records of O;

The selection operator applied to a relation can be implemented with an index.

IndexFilter (R, Idx, ): selection with an index Idx on the  attributes of the
records of R;

= RidIndexFilter(Idx, ): to retrieve the RIDs from an index

+ TableAccess(O, R), to retrieve records from R using the RID in O;

Query Plans, A. Albano 16

1) PHYSICAL PLAN EXAMPLE: SFW

LOGICAL PLAN PHYSICAL PLAN

SELECT A
FROM R
WHERE A BETWEEN 50 AND 100;

 = A BETWEEN 50 AND 100

Project
 ({A})

TableScan
 (R)

Filter
 () 

R

b

A

Query Plans, A. Albano 17

2) PHYSICAL PLAN EXAMPLE: SFW WITH INDEX

IndexFilter

 (R, Idx, )

SELECT *
FROM R
WHERE A BETWEEN 50 AND 100;

 = A BETWEEN 50 AND 100

Idx an index on A

R



LOGICAL PLAN PHYSICAL PLAN

Query Plans, A. Albano 18

EXERCISES

SELECT A, B
FROM R
WHERE (A BETWEEN 50 AND 100) AND B > 20;

Idx an index on A

SELECT A, B
FROM R
WHERE (A BETWEEN 50 AND 100) AND B > 20
ORDER BY A;

Idx an index on A, B

Query Plans, A. Albano 20

PHYSICAL OPERATORS FOR JOIN

Simple, but it must be carefully optimized :

 (Students x Exams) is large; so

 is inefficient.

SELECT *
FROM Students S, Exams E
WHERE S.StudCode = E.Candidate

Students Exams



StudCode=Candidate

Query Plans, A. Albano 21

NESTED LOOPS

foreach r in R do
 foreach s in S do
 if r.r1 = s.s1 then
 add <r, s> to result

R(r1, r2) S(s1, s2)
r1=s1

...

Query Plans, A. Albano 22

EXAMPLE: JOIN PHYSICAL PLAN

SELECT R.C, S.D
FROM R , S
WHERE R.A = S.B;

 J = (R.A = S.B)

NestedLoop (OE,OI,  J): join with nested loop and  J as join condition;

PHYSICAL PLAN

Project
({R.C, S.D})

TableScan
 (R)

TableScan
 (S)

NestedLoop

 (J)

LOGICAL PLAN

R S

b

R.C,S.D

J

Query Plans, A. Albano 23

ANOTHER ALGORITHM

Index Nested loop :

 Hyp: There is an index on the join column s1 of the internal relation (S)

foreach r in R do
 foreach s in S where s1 = r.r1 do
 add <r, s> to result

R(r1, r2) S(s1, s2)
r1=s1

Query Plans, A. Albano 24

EXAMPLE: JOIN PHYSICAL PLAN WITH AN INDEX

SELECT R.C, S.D
FROM R , S
WHERE R.A = S.B; Idx an index on S.B

Project
({R.C, S.D})

TableScan
 (R)

IndexFilter
(S, Idx, S.B = R.A)

OTHER JOIN ALGORITHMS EXIST: MERGEJOIN, HASHJOIN,...

PHYSICAL PLANLOGICAL PLAN

R S

b

R.C,S.D

J

 J = (R.A = S.B)

IndexNestedLoop

 (J)

Query Plans, A. Albano

PHYSICAL OPERATORS FOR

25

IndexNestedLoop (OE,OI,  J): join with index nested loop. The inner operand OI is

an IndexFilter(R, Idx,  J) or Filter (O,  J) with O an IndexFilter(R, Idx,  ').

J

foreach r in R do
 foreach s in S where s1 = r.r1 do
 add <r, s> to result

Query Plans, A. Albano 26

EXAMPLE: JOIN PHYSICAL PLAN WITH AN INDEX

SELECT R.C, S.D
FROM R , S
WHERE R.A = S.B AND S.D <= 5; Idx an index on S.B

Project
({R.C, S.D})

TableScan
 (R)

IndexFilter
(S, Idx, S.B = R.A)

PHYSICAL PLAN
LOGICAL PLAN

R

S

b

R.C,S.D

J

 J = (R.A = S.B)

IndexNestedLoop

 (J)

D <= 5 Filter
 (S.D <= 5)

Query Plans, A. Albano 27

PHYSICAL OPERATORS FOR 

GroupBy (O, {Ai}, {fi}): to group the sorted records of O on the {Ai} using the

aggregation function in {fi}.

• The operator returns records with attributes the {Ai} and the functions in {fi}.

• The records of O are sorted on the {Ai};

HashGroupBy (O, {Ai}, {fi})

Query Plans, A. Albano 28

PHYSICAL PLAN WITH GROUP BY

SELECT A, SUM(B)
FROM R
WHERE A BETWEEN 50 AND 100
GROUP BY A
HAVING COUNT(*) > 1;

LOGICAL PLAN PHYSICAL PLAN

Filter
(A BETWEEN 50 AND 100)

TableScan
 (R)

Sort
({A})ASUM(B), COUNT(*)

R

A BETWEEN 50 AND 100

b

A,SUM(B)

COUNT(*) > 1
GroupBy

({A}, {SUM(B),COUNT(*)})

Filter
(COUNT(*) > 1)

Project
({A, SUM(B)})

Query Plans, A. Albano

Exercises from lesson 14: look at JRS physical query plans

• Using JRS on the database TestStar, write SQL queries and check their Logical

Query Plans for:

1. Number of distinct Customers by Product

SELECT FkProduct, COUNT(DISTINCT FkCustomer) AS NCustomer
FROM InvoiceLines, Invoices
WHERE FkInvoiceNo=PkInvoiceNo
GROUP BY FkProduct;

29

Query Plans, A. Albano

Physical Query Plans in Oracle

• ORACLE: EXPLAIN PLAN

30

Query Plans, A. Albano

Physical Query Plans in SQL Server (using Management Studio)

Estimated execution plan Actual execution plan

	Slide 1: THE BASICS OF QUERY PROCESSING
	Slide 2: DBMS ARCHITECTURE
	Slide 3: THE BASICS OF QUERY PROCESSING
	Slide 4: STORAGE STRUCTURES and RIDs
	Slide 5: WHAT IS AN INDEX?
	Slide 6: EXAMPLES
	Slide 7: QUERY EXECUTION STEPS
	Slide 8: PHYSICAL QUERY PLAN EXECUTION
	Slide 9: QUERY EXECUTION
	Slide 10: IMPLEMENTATION OF RELATIONAL OPERATIONS
	Slide 11: PHYSICAL OPERATORS FOR TABLES AND SORT
	Slide 12: EXAMPLE
	Slide 13: PHYSICAL OPERATORS FOR δ , b
	Slide 14: EXAMPLE
	Slide 15: PHYSICAL OPERATORS FOR 
	Slide 16: 1) PHYSICAL PLAN EXAMPLE: SFW
	Slide 17: 2) PHYSICAL PLAN EXAMPLE: SFW WITH INDEX
	Slide 18: EXERCISES
	Slide 20: PHYSICAL OPERATORS FOR JOIN
	Slide 21: NESTED LOOPS
	Slide 22: EXAMPLE: JOIN PHYSICAL PLAN
	Slide 23: ANOTHER ALGORITHM
	Slide 24: EXAMPLE: JOIN PHYSICAL PLAN WITH AN INDEX
	Slide 25: PHYSICAL OPERATORS FOR
	Slide 26: EXAMPLE: JOIN PHYSICAL PLAN WITH AN INDEX
	Slide 27: PHYSICAL OPERATORS FOR 
	Slide 28: PHYSICAL PLAN WITH GROUP BY
	Slide 29: Exercises from lesson 14: look at JRS physical query plans
	Slide 30: Physical Query Plans in Oracle
	Slide 31: Physical Query Plans in SQL Server (using Management Studio)

