# EXERCISE AT HOME

 Using JRS on the database TestStar, write SQL queries and check their Logical Query Plans for:



- 1. Number of distinct Customers by Product
- 2. Largest invoice revenue by Product
- 3. The percentage of revenue generated by the product over the total revenue of the customer by Customer and Product

### SOLUTIONS

-- Number of distinct Customers by Product

SELECT FkProduct, COUNT(DISTINCT FkCustomer) AS NCustomer FROM InvoiceLines, Invoices WHERE FkInvoiceNo=PkInvoiceNo GROUP BY FkProduct;

-- Largest invoice revenue by Product

WITH TotalByInvoice AS (SELECT FkInvoiceNo As InvoiceNo, SUM(Qty\*Price) As TotalInvoice FROM InvoiceLines GROUP BY FkInvoiceNo) SELECT FkProduct, MAX(TotalInvoice) FROM InvoiceLines, TotalByInvoice WHERE InvoiceNo=FkInvoiceNo GROUP BY FkProduct;

### SOLUTIONS

-- The percentage of revenue generated by the product over the total revenue of the customer by Customer and Product

```
WITHOAS
  (SELECT FkCustomer, FkProduct, SUM(Price) AS Revenue
  FROM InvoiceLines, Invoices
  WHFRF FkInvoiceNo = PkInvoiceNo
  GROUP BY FkCustomer, FkProduct),
b AS
  (SELECT FkCustomer, SUM(Price) AS Revenue
  FROM InvoiceLines, Invoices
  WHFRF FkInvoiceNo = PkInvoiceNo
  GROUP BY FkCustomer)
SELECT a.FkCustomer, a.FkProduct, 100.0*a.Revenue/b.Revenue AS Ratio
FROM a, b
WHERE a FkCustomer = b.FkCustomer
```



UP TO NOW

Data Warehouse: Data Models and DW Design and Implementation.

STARTING TODAY

Data Analysis Using SQL.

How to summarize data using SQL?

What if the query takes a long time to produce the answer?

**OLAP** refers to the technique of performing complex business multidimensional analysis over the data warehouse.

We will see how report developers use SQL to write queries!

### **OLAP SYSTEMS: SOLUTION 1**

The OLAP client interacts with a local DOLAP system (Desktop OLAP) which manages small amount of data extracted from the OLAP server, the Data server or an operational DBMS. It a good choice for those who travel and move extensively, by using portable computers.

E.g., Excel Pivot Tables, Microsoft Power Pivot (Add-in of Excel)

We have seen Pivot Tables in Lesson 13. You will see Power Pivot in the Lab of Data Science module

### OLAP SYSTEMS: SOLUTION 2



The OLAP Client interacts with an OLAP Server, that supports multidimensional

data and operations, and can be one of the following type:

- MOLAP, which stores in the local memory the aggregates of the extended cube, using a specialized data structure. A MOLAP server does not support SQL, but data cube query languages (MDX, DMX).
- ROLAP which stores both the aggregates of the extended cube in the Data Server.
   ROLAP servers may also implement functionalities not supported in the SQL of the Data server.
- HOLAP which stores the data in the Data Server, and (part of) the aggregates of the extended cube in the local memory.

You will see these Solution 2 in the Lab of Data Science module

## VISUAL REPORTING TOOLS

They allows a user or a developer to make data analysis and to build beautiful reports without any knowledge of SQL: Excel pivot tales, PowerPivot, Microstrategy, QlikView, etc



### OLAP SYSTEMS: SOLUTION 3



The DW is managed by a specialized RDBMS (Relational Data Server)

The OLAP Client provides presentation and reporting tools to deal with data analysis and visualization, and interacts with the Data Server through SQL

We assume this solution in the rest of the course!



## SIMPLE REPORTS WITH SQL

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

|                                 | Margin by Brand and by Product<br>Year 2009 |                                                  |                                               |                              |                |                         |
|---------------------------------|---------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------|----------------|-------------------------|
| -                               | Brand                                       | Product                                          | Revenue<br>(€)                                | Margin<br>(€)                | Margin%<br>(%) |                         |
|                                 | B1                                          | P1<br>P2                                         | 2100<br>3720                                  | 273<br>624                   | 13<br>17       |                         |
|                                 | B2                                          | P3<br>P4                                         | 15300<br>12600                                | 1 803<br>756                 | 12<br>6        |                         |
|                                 |                                             | P5<br>P6                                         | 22 500<br>48 300                              | 2 196<br>4 496               | 10<br>9        |                         |
|                                 |                                             |                                                  |                                               |                              | Slice          |                         |
| SELECT                          | г                                           | Brand, Prod<br>SUM(Margin<br>ROUND(10)           | luct, SUM(R<br>n) <b>AS</b> Marg<br>0*SUM(Mar | Revenue<br>gin,<br>roim)/SUM | AS Revenue     | e,<br><b>AS</b> Margin% |
| FROM<br>WHERE<br>GROUP<br>ORDER | BY<br>BY                                    | Sales<br>YEAR(Date<br>Brand, Prod<br>Brand, Prod | ) = 2009<br>luct<br>luct;                     | R                            | collup & dri   | ill-down                |

### AIRLINE COMPANIES: DATA ANALYSIS



### **Requirements analysis**

Number of unoccupied seats in a given year, by flight code, by company name (or type), by class, by departure time (time, day, month, year)

Number of unoccupied seats in a given class and year, by flight code, by company name, by class, by departure (destination) city (country, continent).

Number of unoccupied seats and revenue of the Alitalia company, by year, by month, by destination country.

### Year = 2020

| FlightCode | CompanyName     | Class   | Time  | TotalUnoccupiedSeats |
|------------|-----------------|---------|-------|----------------------|
| AZ2501     | Alitalia        | 1st     | 8:00  | 250                  |
| BA471      | British Airways | economy | 10:00 | 302                  |
|            |                 |         |       |                      |

### AIRLINE COMPANIES: DATA ANALYSIS

#### by company name (or type), by class, by departure time City (time, day, month, year) CityPK CityName Number of unoccupied seats Country in a given class and year, Continent by flight code, by company name, by class, by departure (destination) city (coun-FlightClassSeats try, continent). DepartureTime DepartureTimeFK Company CompanyFK DepartureTimePK Number of unoccupied seats DepartureCityFK **Company PK** Time and revenue of the Alitalia DestinationCityFK CompanyName Day UnoccupiedSeats company, by year, by month, Month Type Revenue Year by destination country. Class << DD> FlightCode << DD>

SELECT FlightCode, CompanyName, Class, Time, SUM(UnoccupiedSeats) As TotalUnoccupiedSeats FROM FlightClassSeats f, DepartureTime t, Company c

**WHERE** f.DepartureTimeFK = t.DepartureTimePK AND f.CompanyFK = c.CompanyPK and year = 2020 **GROUP BY** FlightCode, CompanyName, Class, Time,

**Requirements analysis** 

Number of unoccupied seats in a given year, by flight code.

## AIRLINE COMPANIES: DATA ANALYSIS

#### City CityPK CityName Country Continent FlightClassSeats DepartureTime DepartureTimeFK Company CompanyFK DepartureTimePK DepartureCityFK **Company PK** Time DestinationCityFK CompanyName Day UnoccupiedSeats Month Type Revenue Year Class << DD> FlightCode << DD>

### **Requirements analysis**

Number of unoccupied seats in a given year, by flight code, by company name (or type), by class, by departure time (time, day, month, year)

Number of unoccupied seats in a given class and year, by flight code, by company name, by class, by departure (destination) city (country, continent).

Number of unoccupied seats and revenue of the Alitalia company, by year, by month, by destination country.

- SELECT FlightCode, CompanyName, Class, City, SUM(UnoccupiedSeats) As TotalUnoccupiedSeats
- **FROM** FlightClassSeats f, DepartureTime t, City c
- WHERE f.DepartureTimeFK = t.DepartureTimePK AND f.DepartureCityFK = c.CityPK AND Class='Business' AND year = 2020

GROUP BY FlightCode, CompanyName, Class, City

SELECT year, month, country, SUM(UnoccupiedSeats) As TotalUnoccupiedSeats, SUM(Revenue) As TotalRevenue

- **FROM** FlightClassSeats f, DepartureTime t, City c
- WHERE f.DepartureTimeFK = t.DepartureTimePK AND f.DestinationCityFK= c.CityPK AND CompanyName='Alitalia'

GROUP BY year, month, country

- Case Studies A.3-A.6
  - Conceptual design
  - Logical design
  - Data analysis (for some questions Analytics SQL is required)

- Solutions of A.1-A.6 are in the lecture notes:
  - RECOMMENDATION 1:
    - look at solutions only AFTER you have done the exercise!
  - RECOMMENDATION 2:
    - Compare the solution with your own and understand the differences!

### SIMPLE REPORTS WITH SUBTOTALS

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

| Margin by Brand and by Product<br>Year 2009 |                |                            |                       |                |  |  |
|---------------------------------------------|----------------|----------------------------|-----------------------|----------------|--|--|
| Brand                                       | Product        | Revenue<br>(€)             | Margin<br>(€)         | Margin%<br>(%) |  |  |
| B1                                          | P1<br>P2<br>P3 | 2100<br>3720<br>15300      | 273<br>624<br>1 803   | 13<br>17<br>12 |  |  |
| B1                                          | Total          | 21 120                     | 2 700                 | 13             |  |  |
| B2                                          | P4<br>P5<br>P6 | 12 600<br>22 500<br>48 300 | 756<br>2 196<br>4 496 | 6<br>10<br>9   |  |  |
| B2                                          | Total          | 83 400                     | 7 448                 | 9              |  |  |
| Total                                       |                | 104 520                    | 10148                 | 10             |  |  |

### SIMPLE REPORTS WITH SUBTOTALS IN SQL

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

|       | Margin by Brand and by Product<br>Year 2009 |                            |                       |                |  |  |  |
|-------|---------------------------------------------|----------------------------|-----------------------|----------------|--|--|--|
| Brand | Product                                     | Revenue<br>(€)             | Margin<br>(€)         | Margin%<br>(%) |  |  |  |
| B1    | P1<br>P2<br>P3                              | 2100<br>3720<br>15300      | 273<br>624<br>1 803   | 13<br>17<br>12 |  |  |  |
| B1    | Total                                       | 21 120                     | 2700                  | 13             |  |  |  |
| B2    | P4<br>P5<br>P6                              | 12 600<br>22 500<br>48 300 | 756<br>2 196<br>4 496 | 6<br>10<br>9   |  |  |  |
| B2    | Total                                       | 83 400                     | 7 448                 | 9              |  |  |  |
| Total |                                             | 104 520                    | 10148                 | 10             |  |  |  |

### SIMPLE REPORTS WITH SUBTOTALS IN SQL

### Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

| SELECT            | Brand, Product, SUM(Revenue) AS Revenue,                                     | Margin by Brand and by Product<br>Year 2009 |                    |                         |                       |                 |
|-------------------|------------------------------------------------------------------------------|---------------------------------------------|--------------------|-------------------------|-----------------------|-----------------|
| EROM              | ROUND(100*SUM(Margin)/SUM(Revenue)) AS Margin%                               | Brand                                       | Product            | Revenue<br>(€)          | Margin<br>(€)         | Margin%<br>(%)  |
|                   | YEAR(Date) = 2009<br>Brand Braduet                                           | B1                                          | P1<br>P2           | 2 100<br>3 720          | 273<br>624            | 13<br>17        |
|                   | Brand, Froduct                                                               | B1                                          | P3<br><b>Total</b> | 15300<br><b>21 120</b>  | 1 803<br><b>2 700</b> | 12<br><b>13</b> |
| UNION ALL         |                                                                              | B2                                          | P4<br>P5           | 12600                   | 756                   | 6               |
| SELECT            | Brand, NULL AS Product, SUM(Revenue) AS Revenue, SUM(Margin) AS Margin,      | B2                                          | P6<br>Total        | 48 300<br><b>83 400</b> | 4 496<br><b>7 448</b> | 9<br>9          |
| FROM              | ROUND(100*SUM(Margin)/SUM(Revenue)) AS Margin%                               | Total                                       |                    | 104 520                 | 10148                 | 10              |
| WHERE<br>GROUP BY | YEAR(Date) = 2009<br>Brand                                                   |                                             |                    |                         |                       |                 |
| UNION ALL         |                                                                              |                                             |                    |                         |                       |                 |
| SELECT            | NULL AS Brand, NULL AS Product, SUM(Revenue) AS Re<br>SUM(Margin) AS Margin, | evenue,                                     |                    |                         |                       |                 |

ROUND(100\*SUM(Margin)/SUM(Revenue)) AS Margin% Sales

FROM

WHERE **YEAR**(Date) = 2009

### SQL: OPERATOR ROLLUP

# GROUP BY ROLLUP(A,B)

Semantics: Union of 3 groupings:



### SIMPLE REPORTS WITH SUBTOTALS: ROLLUP



| SELECT   | Brand, Product, SUM(Revenue) AS Revenue,       |
|----------|------------------------------------------------|
|          | SUM(Margin) AS Margin,                         |
|          | ROUND(100*SUM(Margin)/SUM(Revenue)) AS Margin% |
| FROM     | Sales                                          |
| WHERE    | <b>YEAR</b> (Date) = 2009                      |
| GROUP BY | ROLLUP (Brand, Product)                        |
| ORDER BY | Brand, Product;                                |

### SIMPLE REPORTS WITH SUBTOTALS: CROSS-TABULATION

| Product | S1  | S2  | S3  | Total |
|---------|-----|-----|-----|-------|
| P1      | 300 | 500 | 50  | 850   |
| P2      | 30  | 50  | 400 | 480   |
| Total   | 330 | 550 | 450 | 1330  |

| Margin by Brand and by Product<br>Year 2009 |                                                                      |                                                        |                                              |                                |  |  |  |
|---------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|--------------------------------|--|--|--|
| Brand                                       | Product                                                              | Revenue<br>(€)                                         | Margin<br>(€)                                | Margin%<br>(%)                 |  |  |  |
| B1                                          | P1<br>P2                                                             | 2 100<br>3 720                                         | 273<br>624                                   | 13<br>17                       |  |  |  |
| Total B1                                    | P3                                                                   | <b>21 120</b>                                          | <b>2700</b>                                  | 13                             |  |  |  |
| B2                                          | P4<br>P5<br>P6                                                       | 12 600<br>22 500<br>48 300                             | 756<br>2196                                  | 6<br>10                        |  |  |  |
| Total B2                                    | 10                                                                   | 83 400                                                 | 7 448                                        | 9                              |  |  |  |
|                                             | Total P1<br>Total P2<br>Total P3<br>Total P4<br>Total P5<br>Total P6 | 2 100<br>3 720<br>15 300<br>12 600<br>22 500<br>48 300 | 273<br>624<br>1 803<br>756<br>2 196<br>4 496 | 13<br>17<br>12<br>6<br>10<br>9 |  |  |  |
| Total                                       |                                                                      | 104 520                                                | 10148                                        | 10                             |  |  |  |

### SQL: OPERATOR CUBE

# GROUP BY CUBE(A,B)

Semantics: Union of 4 groupings:



### SIMPLE REPORTS WITH SUBTOTALS: CUBE



### PARTIAL ROLLUP AND CUBE

More than one ROLLUP and CUBE can be used in the GROUP BY

```
GROUP BY ROLLUP (A), ROLLUP (B, C)
```

Which groupings are computed?  $\{(A), ()\} \times \{(B, C), (B), ()\}$ 

 $= \{ (A, B, C), (A, B), (A), (B, C), (B), () \}$ 

It is possible to compute only some groupings

```
GROUP BY A, ROLLUP(B, C)
```

computes the groupings: (A, B, C), (A, B), (A)

```
GROUP BY A, CUBE(B, C)
```

computes the groupings: (A, B, C), (A, B), (A, C), (A)

It is possible to compute only some groupings

**GROUP BY GROUPING SETS** ((A), (B, C))

