
The relational model

DB and DBMS

• A database is a collection of persistent data:

• The schema (or meta-data), a collection of time-invariant definitions which describe

the structure of admissible data, as well as constraints on legal data values, i.e.

integrity constraints (abstract knowledge)

• E.g., relation schemes in the relational data model

• The data, a time-variant representation of specific facts (concrete knowledge)

• E.g., a relation in the relational data model

• A Data Base Management System (DBMS) is a centralized or distributed software

system, which provides the tools to:

• define the database schema, and add/modify/delete data,

• to select the data structures needed to store and retrieve data easily,

• and to access the data, interactively using a query language or by means of a

programming language.

1

The relational model

Functions of a DBMS

• Data Description Language (DDL) Data Manipulation Language (DML)

• Data Query Language (DQL) Database administrator (DBA)

Logical view level

Logical level

Physical levelPh
ys

ic
al

d
at

a

in
d
e
pe

nd
e
nc

e

L
og

ic
al

d
at

a

in
d
e
pe

nd
e
nc

e

2

The relational model

Functions of a DBMS

• A user-accessible system catalog

• Data control

• Access control

• Integrity control

• Concurrency control

• Data recovery

• Facilities for the DBA

3

The relational model

SQL (Structured Query Language)

• First defined in 1974

• Standard (ANSI/ISO): SQL-84, SQL-89, SQL-92 (SQL2), SQL:1999 (SQL3),

SQL:2003 (4), SQL:2006 (5), SQL:2008 (6), SQL:2011 (7), SQL:2016 (8)

• SQL-92: entry, intermediate and full SQL.

• SQL:1999: include GROUP BY ROLLUP, CUBE,

• SQL:2003: include analytic functions and windowing

4

The relational model

SQL: Objects

5

The relational model

• Create/Alter/Drop Table/View

SQL: Data Definition Language

6

The relational model

• Insert/Update/Delete

SQL: Data Manipulation Language

7

The relational model

SQL: Data Query Language

8

The relational model

FROM SQL (WHAT) TO ALGEBRA (HOW)

Project with duplicates. The result is a multiset.

Sort. The result is a list (seq T).

In SQL the tables of a database may be without keys and so they are not sets ({T})
but multisets (bags) ({{T}}). To understand the semantics of an SQL query in terms
of a relational algebra expression, the relational algebra is extended on multisets
using the following operators.

Duplicate elimination. The result is a set.

Multiset union, intersection and difference. The result is multiset.

The other operators of relational algebra extends naturally to multisets

9

The relational model

Multiset union, intersection and difference

If an element t appears n times in R and m times in S, then

t appears n + m times in the multiset union of R and S:

 {1,1,2,3} ∪b {2,2,3,4} = {1,1,2,3,2,2,3,4}

t appears min(n, m) times in the multiset intersection of R and S:

 {1,1,2,3} ∩b {2,2,3,4} = {2,3}

t appears max(0, n − m) times in the multiset difference of R and S:

 {1,1,2,3} −b {1,2,3,4} = {1}

10

The relational model

FROM SQL (WHAT) TO ALGEBRA (HOW)

Some clauses are optional

The clauses HAVING and

SELECT use only:

•expr on grouping attributes

i.e.,

•aggregation functions SAF

and HAF (used in HC) over

non- grouping attributes.

11

The relational model

FROM SQL (WHAT) TO ALGEBRA (HOW)

Some clauses are optional

The clauses HAVING and

SELECT use only:

•expr on grouping attributes

i.e.,

•aggregation functions SAF

and HAF (used in HC) over

non- grouping attributes.

12

The relational model

The COUNT bug of SQL: without GROUP BY vs GROUP BY ()

SELECT Count(*) vs SELECT Count(*)

FROM R FROM R

 GROUP BY ()

Same result when R is non-empty.

What is the result if R is empty?

 Count(*)

R

13

The relational model

SQL: WITH Clause (subquery factoring)

• Simplify complex SQL queries, prevent using temporary views/table

• WITH subquery_name AS
(

 SQL query defining subquery

)
 SQL query using subquery_name as a table name

• Exercise: Average number of students per year that passed ‘BSD’

WITH agg AS
(SELECT Count(*) As N
FROM ExamResults
WHERE Subject=‘BSD’
GROUP BY Year(Date))

SELECT Avg(N)
FROM agg

14

The relational model

EXERCISE AT HOME FROM A PREVIOUS LESSON

• Write a SQL query that returns all constant

customers

• Constant: with at least two orders per month
for at least three months in the last four
months.

15

The relational model

EXERCISE AT HOME – SOLUTION

Assuming that a month is a number in the format MM (hence Month -> Year NOT holds)

WITH NOrders AS (

SELECT InitialCustomerKey, COUNT(DISTINCT OrderNumber) AS norders

FROM Sales, Date

WHERE DateFK = DataPK

WHERE Year*12+Month BETWEEN f_lastMonth-3 AND f_lastMonth

GROUP BY InitialCustomerKey, Month, Year

)

SELECT InitialCustomerKey

FROM NOrders

WHERE norders > 1

GROUP BY InitialCustomerKey

HAVING COUNT(*) > 2

16

The relational model

EXERCISE AT HOME – SOLUTION

Assuming that a month is a number in the format YYYYMM (hence Month -> Year holds)

Let f(YYYYMM) = YYYY*12 + MM E.g., f(n) = (n / 100)*12 + n % 100

Let f_lastMonth = f(lastMonth) E.g., f_lastMonth = f(202410) = 24298

WITH NOrders AS (

SELECT InitialCustomerKey, COUNT(DISTINCT OrderNumber) AS norders

FROM Sales, Date

WHERE DateFK = DataPK

WHERE (Month/100)*12+Month%100 BETWEEN f_lastMonth-3 AND f_lastMonth

GROUP BY InitialCustomerKey, Month

)

SELECT InitialCustomerKey

FROM NOrders

WHERE norders > 1

GROUP BY InitialCustomerKey

HAVING COUNT(*) > 2

17

The relational model

SQL: Nested Queries

• Student code and name who passed at least one exam with grade ‘A’

SELECT StudentCode, Name

FROM Students

WHERE StudentCode IN (SELECT Candidate

FROM ExamResults

WHERE Grade=‘A’)

• Student code and name who did not passed any exam

SELECT StudentCode, Name

FROM Students

WHERE StudentCode NOT IN (SELECT Candidate

FROM ExamResults)

19

The relational model

SQL: NULLs

• Missing or unknown values of attributes are modelled with the NULL value

• Problems introduced by the NULL value:

• Test whether a value is NULL: WHERE age IS [NOT] NULL

• Truth value of: age > 25 when age is NULL?

• Three-valued logic

• Which tuples satisfy WHERE C? those where C evaluates to TRUE

23

The relational model

SQL: NULLs

• Features introduced by the NULL value:

• New join operator: R(A1, …,An) S(B1, …, Bm) relations!

• R LEFT OUTER JOIN S ON R.Ai = S.Bj

• Others: RIGHT OUTER JOIN, FULL OUTER JOIN

(R R.Ai=S.Bj S) [(R -b b
A1, …,An (R R.Ai=S.Bj S)) ×{ {B1:NULL, …, Bm :NULL} }]

Name StudentCode

Mario 1

Lucia 2

Anna 3

Subject Candidate Grade

BSD 1 A

DM1 2 B

BSD 2 B

Name StudentCode Subject Candidate Grade

Mario 1 BSD 1 A

Lucia 2 DM1 2 B

Lucia 2 BSD 2 B

Anna 3 NULL NULL NULL

R S

Tuples with no match

24

The relational model

SQL: CASE

• SQL to compute

Name Gender StudentCode

Mario M 1

Lucia F 2

Anna F 3

Subject Candidate Grade

BSD 1 A

DM1 2 B

BSD 2 B

R S

Subject NExamsF NExamsM

BSD 1 1

DM1 1 0

SELECT Subject, Gender, Count(*)

FROM R, S

WHERE StudentCode = Candidate

GROUP BY Subject, Gender

?

25

The relational model

SQL: CASE

• SQL to compute

Name Gender StudentCode

Mario M 1

Lucia F 2

Anna F 3

Subject Candidate Grade

BSD 1 A

DM1 2 B

BSD 2 B

R S

Subject NExamsF NExamsM

BSD 1 1

DM1 1 0

SELECT Subject, SUM(CASE WHEN Gender=‘F’ THEN 1 ELSE 0 END) As NExamsF,

SUM(CASE WHEN Gender=‘M’ THEN 1 ELSE 0 END) As NExamsM

FROM R, S

WHERE StudentCode = Candidate

GROUP BY Subject

26

The relational model

TEST

SELECT FkP, SUM(Qty*UnitPrice)
FROM Sales, Products
WHERE FkP = PkP
GROUP BY FkP

SELECT FkP, SUM(Qty*UnitPrice)
FROM Sales, Products
WHERE FkP = PkP AND UnitPrice > 5
GROUP BY FkP
HAVING COUNT(*)>5

28

	Slide 1: DB and DBMS
	Slide 2: Functions of a DBMS
	Slide 3: Functions of a DBMS
	Slide 4: SQL (Structured Query Language)
	Slide 5: SQL: Objects
	Slide 6: SQL: Data Definition Language
	Slide 7: SQL: Data Manipulation Language
	Slide 8: SQL: Data Query Language
	Slide 9: FROM SQL (WHAT) TO ALGEBRA (HOW)
	Slide 10: Multiset union, intersection and difference
	Slide 11: FROM SQL (WHAT) TO ALGEBRA (HOW)
	Slide 12: FROM SQL (WHAT) TO ALGEBRA (HOW)
	Slide 13: The COUNT bug of SQL: without GROUP BY vs GROUP BY ()
	Slide 14: SQL: WITH Clause (subquery factoring)
	Slide 15: EXERCISE AT HOME FROM A PREVIOUS LESSON
	Slide 16: EXERCISE AT HOME – SOLUTION
	Slide 17: EXERCISE AT HOME – SOLUTION
	Slide 19: SQL: Nested Queries
	Slide 23: SQL: NULLs
	Slide 24: SQL: NULLs
	Slide 25: SQL: CASE
	Slide 26: SQL: CASE
	Slide 28: TEST

