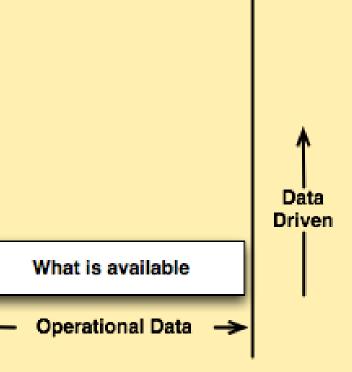
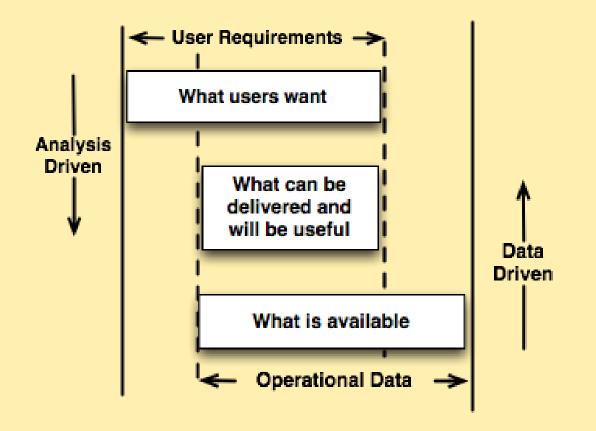

DW CONCEPTUAL DESIGN APPROACHES

Analysis Driven (Bottom-Up, Metric Pull) Design - Kimball


A separate data mart is designed for each business process, and later these schemas are merged forming a coherent global schema for the entire DW. This approach has a limited cost and delivery time.

In most cases the potential users do not understand what the BI tools could be used for when they first see them, so there could not be any significant demand for BI applications.


Data Driven (Top-Down, Data Push) Design - Inmon

An overall, big, enterprise-wide DW is designed, and then separate data marts are tailored for each business process. This approach would take longer to build the DW, and has a high cost and a high risk of failure.

DW CONCEPTUAL DESIGN APPROACHES

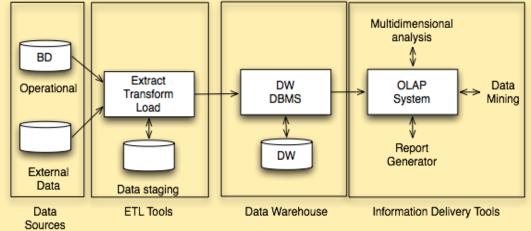
A combination of both methods

Think big, start small and avoid a costly 'big-bang' approach.

DW Design

A DW DESIGN METHODOLOGY

For each data mart:


- Requirements analysis
- Conceptual design
 - Initial conceptual design
 - Candidate conceptual design
 - Final conceptual design
- Logical design

(what will be useful)(what can be delivered)(what can be analysed)

DW Logical design

DW Physical design

ETL (Extract, Transform and Load) Design

DW Design

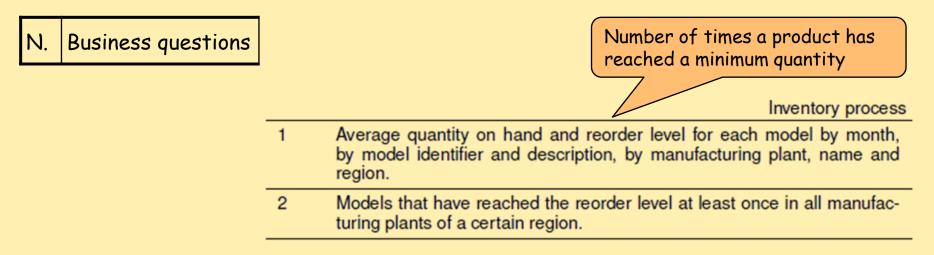
The choice of the first data mart to be implemented is of fundamental importance.

It should be the one that is most likely to be delivered on time, within budget, and to answer the most commercially important business questions.

The best choice for the first data mart tends to be the one that is related to sales.

The purpose of a data warehouse is not just to store data but rather to facilitate decision making. As such, the first step to designing the schema for a data warehouse is to identify the different types of analyses that are relevant to business users.

Requirements gathering & Requirements specification


REQUIREMENTS GATHERING

- Analysis of the nature and purpose of the business
 - CelPhone is a company that deals with the production and sale of cellular phones with its own sales outlets
- Interview business users who will provide information about the business processes and how they are measured
 - Inventory process
 - Sales process
- Interview data source system experts

REQUIREMENTS GATHERING

• Collection of business requirements for data analysis (business questions)

Process

Business process requirements

Process

N	J.	Business	questions	Di	mensio	ns	Measures	Me	etrics	1			
	I		_					Die			Inventory pro	cess	
				N B	isiness qu	estic	ons	Din	nensions		Measures		Metrics?
Fact d	des	cription	_	or m so	der level f onth, by mo	for e del i man	on hand and re- each model by dentifier and de- ufacturing plant,	Ma (Na	del odelID Desc nufactory me, Region re(Month)	•	QuantityOnHand ReorderLevel		
F	Fact		_	or uf	der level at	least	reached the re- once in all man- of a certain re-	Dat	del, e(Week), nufacturing	(Region)	ReorderLevel		
C		in cription t Type			nary ions		eliminary easures						
Ľ		76-											Inventory fact
					Desc	ript	ion		Prel	iminary	Dimensions	Preli	minary measures
							about each pro he end of the n				ufactory,		ntityOnHand, derLevel

Dimensions

Dimensions

Name Description Granularity

				[Dimensions		Date
		Name	Description	Granularity	1	Attribute	Description
Dimensional attributes		Date Model Manufactory	···· ···	A month A model A manufacte	uring plant	Month Year	
			Model		Manufactory	,	
Dimension		Attribute	Description	Attribute	Description	-	
Attribute Des	cription	ModeIID Description		Name Region	···· ···	_	

Dimensional Hierarchies

Dimensional Hierarchies

Dimension	H. Description	Н. Туре
-----------	----------------	---------

Dimensional Hierarchies

Dimension	Description	Hierarchy type
Date	$Day \to Month \to Quarter \to Year$	Balanced

Dimensional attributes changes (see later on)

Dimension

Name Changing	Treatment
attribute	of changes

MEASURES

Fact Measures and Metrics

Measure	Description	Aggregabilit	у	Calculated
			Meas	sures
Measure	Description	Aggregability	Calcula	ated
QuantityOnHa	ınd	Semi additive across Date	No	
ReorderLevel		Non additive	No	

Descriptive attributes of the fact

Descriptive attributes

Attribute	Description
	•

			Inicasures
Measure	Description	Aggregability	Calculated
QuantityOrdered (Q)		Additive	No
ExtendedPrice (P)	UnitPrice $\times Q$	Additive	Yes
ExtendedCost (C)	UnitCost $\times Q$	Additive	Yes
Discount (D)	ExtendedPrice reduction	Additive	No
Revenue (R)	P-D	Additive	Yes
Margin	R-C	Additive	Yes

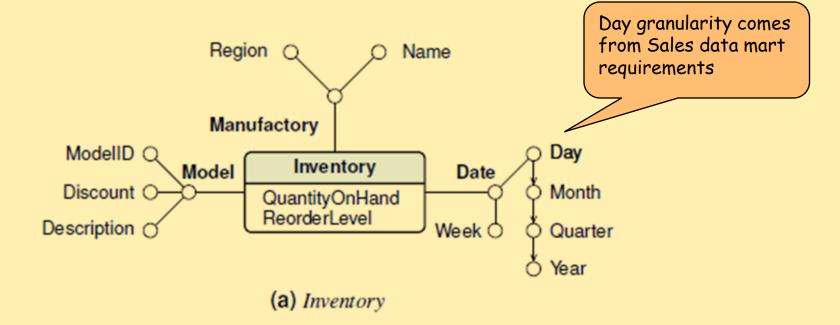
Measures

If there are several facts, two conformance matrix for common dimensions and measures

Facts Dimensions

Dimension Fact 1 Fact n

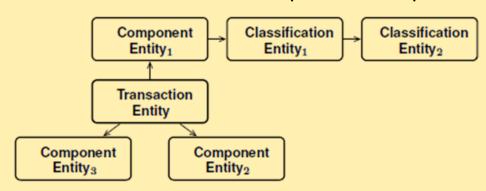
Facts Measures


Measure	Fact		Fact n
---------	------	--	--------

	Fact dimensions			
Dimension	Inventory	Sales		
SalesOutlet Model	х	X		
Manufactory Customer	X	X X		
Date	Х	Ŷ		

Fact measures

Measure	Inventory	Sales
QuantityOnHand ReorderLevel	X X	
ExtendedPrice	~	X X
ExtendedCost Revenue		X
Margin QuantityOrderd		X X
Discount		Х


INITIAL ANALYSIS-DRIVEN DATA MART CONCEPTUAL DESIGN

DW Design

CANDIDATE DATA-DRIVEN CONCEPTUAL DESIGN

- 1. Operational databases analysis
- 2. Entity classification
 - Transaction entities: describe events that occur at a point in time and contain measurements
 - Component entities: related to transaction entities via a one-to-many relationship
 - Classification entities: related to component entities via a one-to-many relationship chain

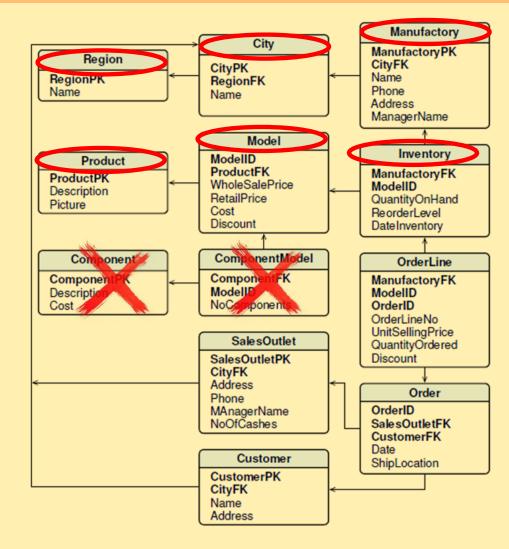
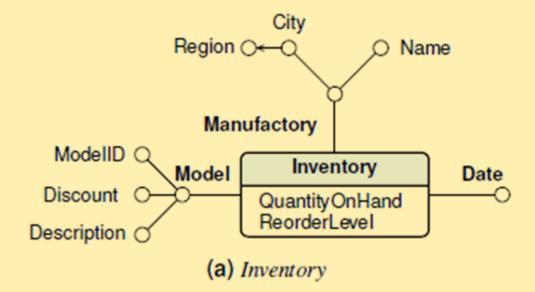
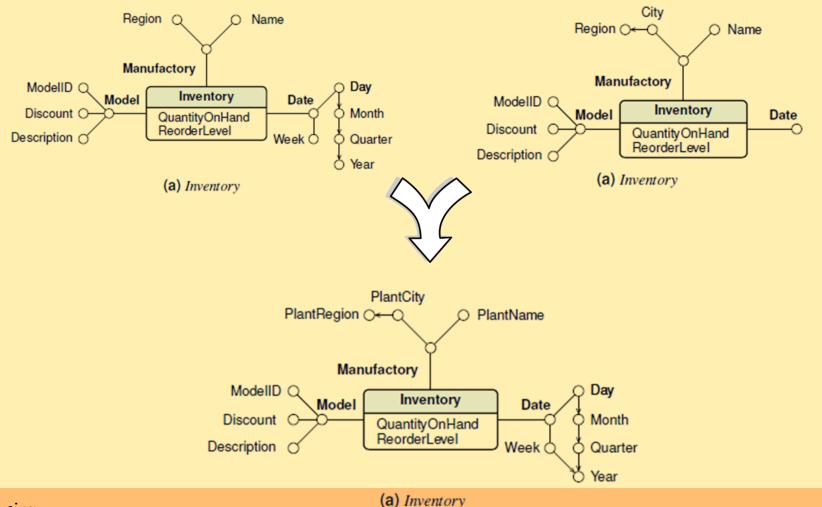



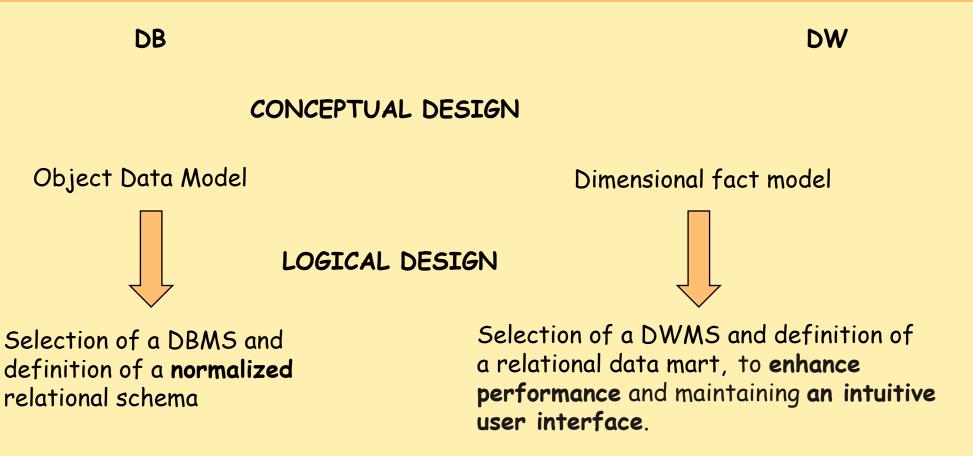
Figure 3.13: The operational database

DW Design


CANDIDATE DATA-DRIVEN CONCEPTUAL DESIGN

3. Candidate data mart conceptual design

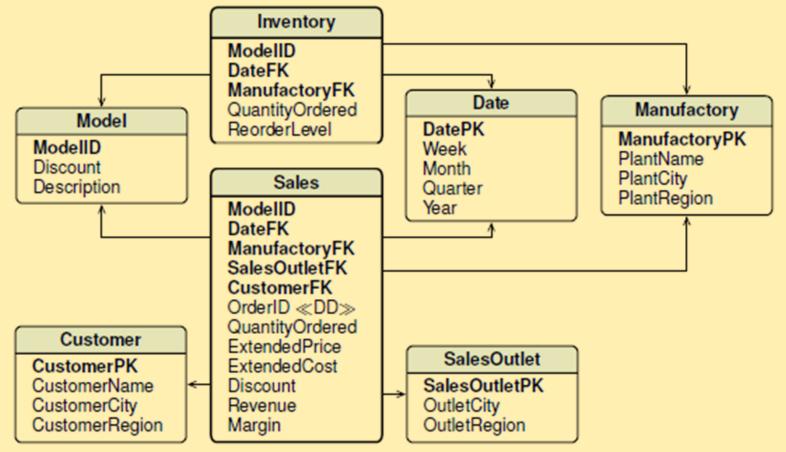
FINAL DATA MART CONCEPTUAL DESIGN


 From a comparison of the initial and candidate conceptual designs the final data marts are defined (the design of will be useful and what can be delivered)

DW Design

21

FROM CONCEPTUAL TO LOGICAL DESIGN



Usually normalizing the dimension tables would interfere with both of these objectives.

LOGICAL DESIGN: THE SIMPLE CASE

LOGICAL DESIGN: THE SIMPLE CASE

(c) Data warehouse constellation schema

EXERCISE: TEST DIMENSIONAL HIERARCHIES AND YOUR KNOWLEDGE OF SQL

Date(DatePk, Month, Quarter, Year)

How to verify on the loaded table the validity of the hierarchy Month \rightarrow Year ?

Write a query that returns an empty result set iff **the functional dependency is valid**.

Definition 8.1 *Functional Dependency*

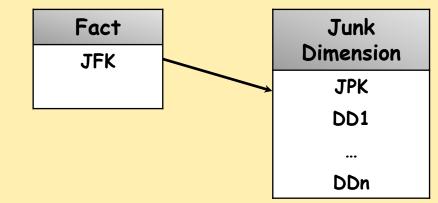
Given a relation schema R and X, Y subsets of attributes of R, a functional dependency $X \to Y$ (X determines Y) is a constraint that specifies that for every possible instance r of R and for any two tuples $t_1, t_2 \in r$, $t_1[X] = t_2[X]$ implies $t_1[Y] = t_2[Y]$.

EXERCISE: TEST DIMENSIONAL HIERARCHIES AND YOUR KNOWLEDGE OF SQL

Date(DatePk, Month, Quarter, Year)

How to verify on the loaded table the validity of the hierarchy Month \rightarrow Year ?

Write a query that returns an empty result set iff **the functional dependency is valid**.


SELECT Month FROM Date GROUP BY Month HAVING COUNT(DISTINCT Year) > 1; WITH MonthYearSubquery AS
 (SELECT DISTINCT Month, Year
 FROM Date)
SELECT Month
FROM MonthYearSubquery
GROUP BY Month
HAVING COUNT(*) > 1;

DEGENERATE DIMENSIONS

- Always stored in the fact table?
- Space to store in the fact table is
 - [space(DD1) + ... + space(DDn)]*NFacts
- A junk dimension contains all possible combinations of values of DD1, ..., DDn

```
Space with a junk dimension is
space(JFK)*Nfacts +
[space(JPK)+space(DD1) + ... + space(DDn)]
* NValues1 * ... * NValuesn
```


DEGENERATE DIMENSIONS: EXAMPLE

- DD1 is age, space(DD1) = 8 bytes, Nvalues1 = 100
- DD2 is gender, space(DD2) = 1 byte, NValues2 = 2
- space(JFK) = space(JPK) = 8 bytes
- Space to store in the fact table: 9 x NFacts
- Space to store in junk dimension: 8 x NFacts + (8+ 8 + 1) x 100 x 2
- Junk dimension is better for 8 NFacts + 3400 < 9 NFacts, i.e., 3400 < NFacts

		Fact		Junk Dimension		
				JPK	Age	Gender
	•••	JFK		1	18	M
	•••	1		2	18	F
	•••	164		•••	•••	
	•••			163	100	M
				164	100	F
DW Design				•••	•••	

	Fact
 Age	Gender
 18	M
 100	F