
Introduction to FastFlow programming

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

SPM lecture, November 2015

 2

ClassWork4: comments

● Let's comment on a possible solution of the first version. Take a look in the
ClassWork4 folder:

 ~spm1501/public/ClassWork4/primes_master-worker.cpp

● Please compare your solution with the second version provided in the same folder:

 ~spm1501/public/ClassWork4/primes_master-worker2.cpp

 3

Data Parallel Computations
● In data parallel computations, large data structures are partitioned among the number of

concurrent resources each one computing the same function (F) on the assigned partition

● Input data may come from an input stream

● Typically the function F may be computed independently on each partition

– There can be dependencies as in stencil computations

● Goal: reduce the completion time for computing the input task

● Patterns:

– map, reduce, stencil, scan,… typically they are encountered in sequential program as loop-
based computations

● In FastFlow we decided to implement a sort of building-block for data-parallel
computations that are the ParallelFor/ParallelForReduce

 4

FastFlow ParallelFor
● The ParallelFor patterns can be used to parallelize loops with independent iterations

● The class interface is defined in the file parallel_for.hpp

● Example:

● Constructor interface (all parameters have a default value):

– ParallelFor(maxnworkers, spinWait, spinBarrier)

● parallel_for interface (on the base of the number and type of bodyF arguments you have
different parallel_for methods):

– parallel_for(first, last, step, chunk, bodyF, nworkers)

– bodyF is a C++ lambda-function

// A and B are 2 arrays of size N

for(long i=0; i<N; ++i)
 A[i] = A[i] + B[i];

#include <ff/parallel_for.hpp>
using namespace ff;

ParallelFor pf; // defining the object

pf.parallel_for(0, N, 1, [&A,B](const long i) {
 A[i] = A[i] + B[i];
});

 5

● The ParallelForReduce patterns can be used to parallelize loops with independent
iterations having reduction variables (map+reduce)

● Example:

● The constructor interface is the same of the ParallelFor (but the template type)

● parallel_reduce method interface

– parallel_reduce(var, identity-val, first, last, step, chunk, mapF, reduceF, nworkers)

– mapF and reduceF are C++ lambda-functions

// A is an array of long of size N
long sum = 0;
for(long i=0; i<N; ++i)
 sum += A[i];

#include <ff/parallel_for.hpp>
using namespace ff;

ParallelForReduce<long> pfr;
long sum=0;
pfr.parallel_reduce(sum, 0,
 0,N,1, [](const long i, long &mysum) {
 mysum += A[i] + B[i];
 },
 [](long &s, const long e) { s += e;}
);

FastFlow ParallelForReduce

 6

ParallelForReduce example

● Dot product (or scalar product or inner product), takes to vectors (A,B) of the same
length, it produces in output a single element computed as the sum of the products
of the corresponding elements of the two vectors. Example:

● Let's comment the FastFlow parallel implementation in the tutorial folder

<fastflow-dir>/tutorial/fftutorial_source_code/examples/dotprod/dotprod.cpp

long s=0;
for(long i=0; i<N; ++i) s += A[i] * B[i];

 7

ClassWork5: finding prime numbers

● Same problem of ClassWork4.

● Give a parallel implementation of the problem by using the FastFlow ParallelFor
pattern.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

