Introduction to FastFlow programming

SPM lecture, November 2015

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

ClassWork4: comments

e Let's comment on a possible solution of the first version. Take a look in the
ClassWork4 folder:

~spm1501/public/ClassWork4/primes_master-worker.cpp

e Please compare your solution with the second version provided in the same folder:

~spm1501/public/ClassWork4/primes_master-worker2.cpp

Data Parallel Computations

In data parallel computations, large data structures are partitioned among the number of
concurrent resources each one computing the same function (F) on the assigned partition

Input data may come from an input stream

Typically the function F may be computed independently on each partition
— There can be dependencies as in stencil computations

Goal: reduce the completion time for computing the input task

Patterns:

— map, reduce, stencil, scan,... typically they are encountered in sequential program as loop-
based computations

In FastFlow we decided to implement a sort of building-block for data-parallel
computations that are the ParallelFor/ParallelForReduce

FastFlow ParallelFor

e The ParallelFor patterns can be used to parallelize loops with independent iterations
e The class interface is defined in the file parallel_for.hpp

e Example:

#include <ff/parallel_for.hpp>

_ using namespace ff;
/[A and B are 2 arrays of size N

i ' ParallelFor pf; // defining the object
for(long i=0; i<N; ++i)

Ali] = Ali] + BIi]; pf.parallel_for(0, N, 1, [&A,B](const long i) {
Ali] = Ali] + BJi];
D;

» Constructor interface (all parameters have a default value):

— ParallelFor(maxnworkers, spinWait, spinBarrier)

e parallel_for interface (on the base of the number and type of bodyF arguments you have
different parallel_for methods):

— parallel_for(first, last, step, chunk, bodyF, nworkers)

— bodyF is a C++ lambda-function 4

FastFlow ParallelForReduce

The ParallelForReduce patterns can be used to parallelize loops with independent
iterations having reduction variables (map-+reduce)

e Example:
#include <ff/parallel_for.hpp>
using namespace ff;
/[A'is an array of long of size N

long sum = 0; ParallelForReduce<long> pfr;
for(long i=0; i<N; ++i) long sum=0;
sum += A[i]; pfr.parallel_reduce(sum, O,

O,N,1, [[(const long i, long &mysum) {
mysum += A[i] + Bi];
h
[1(long &s, const long e) { s +=e;}

);

e The constructor interface is the same of the ParallelFor (but the template type)

e parallel_reduce method interface

— parallel_reduce(var, identity-val, first, last, step, chunk, mapF, reduceF, nworkers)

— mapF and reduceF are C++ lambda-functions

ParallelForReduce example

e Dot product (or scalar product or inner product), takes to vectors (A,B) of the same
length, it produces in output a single element computed as the sum of the products
of the corresponding elements of the two vectors. Example:

long s=0;
for(long i=0; i<N; ++i) s += A[i] * B[i];

e Let's comment the FastFlow parallel implementation in the tutorial folder

<fastflow-dir>/tutorial/fftutorial_source_code/examples/dotprod/dotprod.cpp

ClassWork5: finding prime numbers

e Same problem of ClassWork4.

e Give a parallel implementation of the problem by using the FastFlow ParallelFor
pattern.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

