
Business Processes Modelling 
MPB (6 cfu, 295AA) 

Roberto Bruni 
http://www.di.unipi.it/~bruni 

07 - Business process  
modelling notation

 1

http://www.di.unipi.it/~bruni


BPMN basics 
BPMN key features 

More on BPMN 
BPMN semantics

121



More artefacts 
(data-objects, groups)

122



Data object

123

A data object represents information flowing through the 
process, such as documents, emails and letters 

A data object is often represented by the usual file icon

Events Activities

Artefacts

Graphical connecting objects

Sequence flow mechanism Compensation Association

S
ta

rt

In
te

rm
e

d
ia

te

E
n
d

Message

Timer

Error

Multiple

Link

Rule

Compensation

Cancel

Terminate

General

Event type

A message arrives from a participant and triggers the Event. This causes 

process to {start, continue, end} if it was waiting for a message, or changes 

the flow if exception happens. End type of message event indicates that a 

message is sent to a participant at the conclusion of the process.

Event flow 
Description

An event is something that »happens« during the process. These events affect the 
flow of the process and usually have a cause (trigger) or an impact (result). 
Examples: 'Email received', '3 o'clock', 'Warehouse empty', 'Critical error',...

An activity is a generic type of work that a company performs. An 
activity can be atomic (task) or compound (process, sub-process). 
Examples: 'Send a letter', 'Write a report', 'Calculate the interests',...

~

Description

Process

Collapsed 

sub-process

Expanded 

sub-process

Task

Transaction

A task is used to represent the 
activity on the lowest abstraction 
level.

More information about the 
transaction and compensation 
attribute can be found under 
»Compensation Association«.

Looping

Ad Hoc

Compensation

Task/Subprocess special attributes

The task or sub-process is repeated.

The tasks in the sub-process can not be connected with 
sequence flows at design time.

Multiple instances of task or sub-process will be created.

The symbol represents a compensation task or sub-process.

Multiple instances

Gateways
A gateway is used to split or merge multiple process 
flows. Thus it will determine branching, forking, 
merging and joining of paths. Examples: 'Condition true? 

– yes/no', 'Choose colour? – red/green/blue',...

Gateway control types

Data based exclusive decision or 
merging. Both symbols have equal 
meaning. See also Conditional flow.

Event based exclusive decision only.

Data based inclusive decision or 
merging.

Complex condition (a combination of 
basic conditions)

Parallel forking and joining 
(synchronization).

XOR
(DATA)

XOR
(EVENT)

OR

COM-
PLEX

AND

Swimlanes

P
o

o
l L
a

n
e

Pools and lanes are used to represent organizations, 
roles, systems and responsibilities. Examples: 

'University', 'Sales division', 'Warehouse', 'ERP system',...

A Lane is a sub-partition within a pool used to organize and 
categorize activities.

A Pool represents a participant in a process. It contains a business 
process and is used in B2B situations.

A Pool MUST contain 0 or 1 
business process.

A Pool can contain 0 or more 
lanes. 

Two pools can only be connected 
with message flows.

Artefacts are used to provide additional information about the process. If 
required, modellers and modelling tools are free to add new artefacts. 
Examples of data objects: 'A letter', 'Email message', 'XML document', 
'Confirmation',...

Set of standardized artefacts

Data object

Group

Annotation

Data objects provide information about what activities are required to be 

triggered and/or what they produce. They are considered as Artefacts 

because they do not have any direct effect on the Sequence Flow or 

Message Flow of the Process. The state of the data object should also be 

set.

Grouping can be used for documentation or analysis purposes. Groups 

can also be used to identify the activities of a distributed transaction that is 

shown across Pools. Grouping of activities does not affect the Sequence 

or Message Flow.

Text Annotations are a mechanism for a modeller to provide additional 

information for the reader of a BPMN Diagram.

Normal 
sequence flow
Conditional 
sequence flow
Default 
sequence flow

Message flow

Association

There are three ways of connecting Flow objects (Events, Activities, 
Gateways) with each other or with other information – using sequence 
flows, message flows or associations.

Graphical connecting objects

A Sequence Flow is used to show the order In which the activities in a 

process will be performed.

A Message Flow is used to show the flow of messages between two 

participants that are prepared to send and receive them. In BPMN, 

two separate Pools in a Diagram can represent the two participants.
An Association (directed, non-directed) is used to associate 

information with Flow Objects. Text and graphical non-Flow Objects 

can be associated with Flow objects.

A Sequence Flow can have condition expressions which are evaluated 

at runtime to determine whether or not the flow will be used.

For Data-Based Exclusive Decisions or Inclusive Decisions, one type 

of flow is the Default condition flow. This flow will be used only if all 

other outgoing conditional flows are NOT true at runtime.

Sequence Flow and Message Flow rules
Only objects that can have an incoming and/or outgoing Sequence Flow / Message 
Flow are shown in the Tables Below.

Start 

transaction

Successfull

transaction

Task A

Transaction boundary

Undo task A

Task B

Undo task B

Failed transaction

Transaction 

exception

Handle through 

other services

Wait a few minutes

Try again

Error - compensation 

events cannot be 

triggered

Task

Compensation activity

In case of transactions it is desired that all activities which constitute 
a transaction are finished successfully. Otherwise the transaction fails 
and rollback (compensation) activities occur which undo done 
activities.

Normal sequence flow

Use of the sequence flow 
mechanism

Use of message events and 
message flows

Use of flows within lanes Use of gatewaysWrong use of flows in/between 
pools

When modelling Pools, sequence flows and start/end events are 
often missing, because it is wrongly presumed that message 
flows substitute sequence flows. Additionally, sequence flows 
are incorrectly used to connect pools.

P
o

o
l 
A

Task A

P
o

o
l 
B

Task D

Message 

flow AD

Message 

flow EB

Task B

Task E

Missing sequence flows

Task C

Task F

Missing end event

Missing start event

Model the process in each Pool independently and afterwards 
define message flows between Pools.

(Wrong) Use of time events

Task A Task B ......

Task B ...

Delay

Exception time

(e.g. »after 2 hours«)

Here a time event Is used as 

a DELAY mechanism.

Here it represents the 

DURATION of a task.

...

An intermediate event 

has to be used.

There are two common mistakes when using time events. First, 
starting events are often used instead of intermediate events. 
Second, intermediate events are often used as a delay 
mechanism but modelled as an exception mechanism 
(representing the duration of a task) and vice-versa (see the 
right use below).

Use of tasks and events

Starting 

task A

Receiving 

document 

X

...
Task A 

finished

Document X

...

Task A
...

Normal flow

Document X

Event X

Analysts often wrongly model events and tasks. For 
example: events are wrongly modelled as tasks, task states 
are modelled as new tasks. 

This task is redundant. 

Task automatically 

starts at input 

sequence flow 

This task is redundant. 

Task A is automatically 

finished at output 

sequence flow. 

This task is redundant.The act of receiving 

a document is a task itself. 

Task A Task B ......

Message A

Message B
A

B

Task A Task B ......

Message A

B

Message B

Starting and intermediate events can not be sources of 
message flows.

Both examples are wrong - intermediate 

message events can not produce 

message flows. Events can be only 

triggered by a message flow.

Wrong positioning of 

message event

The Start Event indicates where a particular process will start. Intermediate 

Events occur between a Start Event and an End Event. It will affect the flow 

of the process, but will not start or (directly) terminate the process. The End 

Event indicates where a process will end.

A specific time or cycle can be set that will trigger the start of the Process 

or continue the process. Intermediate timer can be used to model the time-

based delays.

This type of event is triggered when the conditions for a rule

become true. Rules can be very useful to interrupt the loop process, for 

example: 'The number of repeats = N'. Intermediate rule is used only for 

exception handling.

A Link is a mechanism for connecting the end (Result) of one

Process to the start (Trigger) of another. Typically, these are

two Sub-Processes within the same parent Process. It can be used, for 

example, when the working area (page) is too small – go to another page.

This type of event indicates that there are multiple ways of triggering the

Process. Only one of them will be required to {start, continue, end}  the 

Process.

This type of End indicates that a named Error should be generated. This 

Error will be caught by an Intermediate Event within the Event Context.

This type of End indicates that all activities in the Process should be 

immediately terminated. This includes all instances of Multi-Instances. The 

Process is terminated without compensation or event handling.

Explanation of Poster Symbols

About the BPMN Poster

Sequence flows are not 

allowed between Pools

P
o

o
l 
B L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

P
o

o
l 
A L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

A message flow is not 

allowed within a process
A Pool can contain only one 

(1) process

Lanes are often wrongly used in similar ways as Pools. They 
wrongly contain more business processes or contain message 
flows between different lanes.

Gateways are connected only with sequence flows. Also Avoid 
potential deadlocks when using gateways.

Task A

Task B

Decision 

information 

from Pool X

Message flow cannot 

influence the gateway

No output flow from the task 

exists.

The decision must 

contain at least two 

output flows

When using expanded sub-processes, sequence flows should 
be connected to the boundaries of sub-processes. Processes 
and sub-processes should start and end properly!

Task A

Sub-process »P«

Task B Task C

A sequence flow cannot cross 

the boundary of a sub-process

The process should have an 

end event

The sub-process should 

have a start event

Task A

Sub-process »P«

Task B Task C

Task C

A conditional flow Is not 

allowed (necessary) here

Send message to 

Pool X A message flow cannot be 

a gateway alternative

Analysing 

decision 

information

Task A

Task B

Task C

Send message 

to Pool X

Message to Pool X

Message

from Pool X

Exception flow

Until Loop

~

Ad Hoc –

No flow

The Sequence Flow mechanisms is divided into types: Normal flow, Exception flow, 

Conditional flow, Link Events and Ad Hoc (no flow). Refer also to specific 

»Workflow Patterns«.

A

A

Intermediate 

link used as 

GOTO

Important note, explanation

Warning or error in the BPMN model

Recommendation

Wrong model

Right (corrected) model

This poster is licensed under the Creative Commons Attribution-
Noncommercial-No Derivative Works 2.5 Slovenia License 

Authors: 
Gregor Polan!i! & Tomislav Rozman 

Email: info@itposter.net
University of Maribor

Faculty of Electrical Engineering and Computer Science
Institute of Informatics

Poster version: 1.0.9 (4th June 2008)
Literature used: BPMN Specification 1.0 @ http://www.bpmi.org

http://bpmn.itposter.net

This is used for compensation handling--both setting and performing 

compensation. It calls for compensation if the Event is part of a Normal 

Flow. It reacts to a named compensation call when attached to the 

boundary of an activity. Very useful for modelling roll-back actions within 

the transaction.

This type of  Event is used within a Transaction Sub-Process. This type of 

Event MUST be attached to the boundary of a Sub-Process. It SHALL be 

triggered if a Cancel End Event is reached within the Transaction Sub-

Process.

Workflow patterns
Normal sequence flow

Parallel split, uncontrolled flow

Multiple merge, uncontrolled flow

Exclusive choice with 

decision gateway

Simple merge, 

uncontrolled flow

Synchronization

(pararel join)

Parallel split, 

forking gateway

Discriminator,

merging gateway

Multiple choice

Alter. 3

Alter. 1

Alter. 2

Event based decision Complex decision 

(gateway)

Multiple choice, inclusive 

decision gateway Synchronization merge, 

merging gateway

Simple merge, 

uncontrolled flow

Intermediate link 

used as GOTO

No Expanded sub-process

Looped subprocess

Interrupt 

loop rule

B

B ~ Collapsed adhoc sub-process

F
ro

m
:

To:

F
ro

m
:

To:

L
a

n
e[state]

Check for the latest version at: http://bpmn.itposter.net

Example of a

deadlock

Exception X

Exception X

Exception X

Performing 

task A

Conditional flow

Although it is recommended that a process has an explicit start and end 
event, this is not a rule. In fact start and end events can be hidden in a sub 
process, if needed, or attached to the boundary of the task so as not to 
interrupt the normal sequence flow between the sub-process and the rest of 
the process.

Document Y

Event Y

Exception flow

Cancel - compensation events are triggered. 

Cancel event can be used only with transaction.

...

...

......

... ...

...



Association, again

124

Gateways Data

Attaching a data object with an Undirected 
Association to a sequence flow indicates hand‐over 

of information between the activities involved.

A Directed Association indicates information flow. 

A data object can be read at the start of an 

activity or written upon completion.

A Bidirected Association indicates that the data 

object is modified, i.e. read and written during the 

execution of an actvity.

A Data Object represents information flowing 

through the process, such as business documents, 

e‐mails or letters. 

Events Transactions

Swimlanes

activity

Start Event: Catching an event 

starts a new process instance.

Intermediate Event (catching): 
The process can only continue 

once an event has been caught.

Attached Intermediate Event: The 

activity is aborted once an event is 

caught.

Intermediate Event (throwing): 
An event is thrown and the process 

continues.

End Event: An event is thrown 

when the end of the process is 

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically 

showing where the process 

starts or ends.

Receiving and sending 

messages.

Cyclic timer events, points in 

time, time spans or timeouts.

Catching or throwing named 

errors.

Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation handling or 

triggering compensation.

Reacting to changed business 

conditions or integrating 

business rules.

Signalling across different 

processes. One signal thrown 

can be caught multiple times.

Catching or throwing one out of 

a set of events.

Off‐page connectors. Two 

corresponding link events equal 

a sequence flow.

Triggering the immediate 

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing 

branches based on conditions. When merging, it awaits one incoming branch 

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching 

conditions. When merging, it awaits all active incoming branches to 

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal 

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated 

simultaneously. When merging parallel branches it waits for all incoming 

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate 

Activity

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Attached Intermediate Cancel Events indicate 

reactions to the cancellation of a transaction. 

Activities inside the transaction are compensated 

upon cancellation.

Completed activities can be compensated. An 

activity and the corresponding Compensate Activity 

are related using an attached Intermediate 
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes 

information flow across 

organizational boundaries.

Message flow can be attached to 

pools, activities, or message events.

The order of message exchanges 

can be specified by combining 

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent 

responsibilities for activities in a 

process. A pool or a lane can be an 

organization, a role, or a system.

Lanes sub‐divide pools or other 

lanes hierarchically.

Pool
Collapsed Pools hide all internals 

of the contained processes.

Task

Task

~

Collapsed 

Subprocess

Intermediate 

Message Event

Task

Task

Task

Task

Loop 

Activity

Multiple 

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data 

Object 

[state1]

Data 

Object 

[state2]

Conditional

Start Event

Parallel 

Gateway

Parallel 

Gateway

Grouping

End Event

Terminate 

End Event

Data‐based 

Exclusive  

Gateway

Embedded 

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data 

Object

Intermediate 

Timer Event

Sequence 

Flow

Intermediate 

Error Event

Exception 

Flow

Event‐based 

Exclusive  

Gateway Intermediate 

Message Event

Intermediate 

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is 

routed to the subsequent event/task which happens first.

Condition

Default 

Flow

Multiple 

Instances

Loop

Multiple Instances of the 

same activity are started in 

parallel or sequentially, e.g. 

for each line item in an 

order.

Loop Activity is iterated if a 

loop condition is true. The 

condition is either tested 

before or after the activity 

execution.

Ad‐hoc Subprocesses 
contain tasks only. Each task 

can be executed arbitrarily 

often until a completion 

condition is fulfilled.

Collapsed 

Subprocess

Task
A Task is a unit of 

work, the job to be 

performed.

A Subprocess is a 

decomposable activity. 

It can be collapsed to 

hide the details.

An Expanded Subprocess contains a 

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the 

execution order of activities.

Conditional Flow has a 

condition assigned that 

defines whether or not the 

flow is used.

Default Flow is the default 

branch to be chosen if all 

other conditions evaluate to 

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be 

defined as a Group to show that 

they logically belong together.

Any object can be associated with a 

Text Annotation to provide 

additional documentation.



Question time

125

Gateways Data

Attaching a data object with an Undirected 
Association to a sequence flow indicates hand‐over 

of information between the activities involved.

A Directed Association indicates information flow. 

A data object can be read at the start of an 

activity or written upon completion.

A Bidirected Association indicates that the data 

object is modified, i.e. read and written during the 

execution of an actvity.

A Data Object represents information flowing 

through the process, such as business documents, 

e‐mails or letters. 

Events Transactions

Swimlanes

activity

Start Event: Catching an event 

starts a new process instance.

Intermediate Event (catching): 
The process can only continue 

once an event has been caught.

Attached Intermediate Event: The 

activity is aborted once an event is 

caught.

Intermediate Event (throwing): 
An event is thrown and the process 

continues.

End Event: An event is thrown 

when the end of the process is 

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically 

showing where the process 

starts or ends.

Receiving and sending 

messages.

Cyclic timer events, points in 

time, time spans or timeouts.

Catching or throwing named 

errors.

Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation handling or 

triggering compensation.

Reacting to changed business 

conditions or integrating 

business rules.

Signalling across different 

processes. One signal thrown 

can be caught multiple times.

Catching or throwing one out of 

a set of events.

Off‐page connectors. Two 

corresponding link events equal 

a sequence flow.

Triggering the immediate 

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing 

branches based on conditions. When merging, it awaits one incoming branch 

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching 

conditions. When merging, it awaits all active incoming branches to 

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal 

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated 

simultaneously. When merging parallel branches it waits for all incoming 

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate 

Activity

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Attached Intermediate Cancel Events indicate 

reactions to the cancellation of a transaction. 

Activities inside the transaction are compensated 

upon cancellation.

Completed activities can be compensated. An 

activity and the corresponding Compensate Activity 

are related using an attached Intermediate 
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes 

information flow across 

organizational boundaries.

Message flow can be attached to 

pools, activities, or message events.

The order of message exchanges 

can be specified by combining 

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent 

responsibilities for activities in a 

process. A pool or a lane can be an 

organization, a role, or a system.

Lanes sub‐divide pools or other 

lanes hierarchically.

Pool
Collapsed Pools hide all internals 

of the contained processes.

Task

Task

~

Collapsed 

Subprocess

Intermediate 

Message Event

Task

Task

Task

Task

Loop 

Activity

Multiple 

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data 

Object 

[state1]

Data 

Object 

[state2]

Conditional

Start Event

Parallel 

Gateway

Parallel 

Gateway

Grouping

End Event

Terminate 

End Event

Data‐based 

Exclusive  

Gateway

Embedded 

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data 

Object

Intermediate 

Timer Event

Sequence 

Flow

Intermediate 

Error Event

Exception 

Flow

Event‐based 

Exclusive  

Gateway Intermediate 

Message Event

Intermediate 

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is 

routed to the subsequent event/task which happens first.

Condition

Default 

Flow

Multiple 

Instances

Loop

Multiple Instances of the 

same activity are started in 

parallel or sequentially, e.g. 

for each line item in an 

order.

Loop Activity is iterated if a 

loop condition is true. The 

condition is either tested 

before or after the activity 

execution.

Ad‐hoc Subprocesses 
contain tasks only. Each task 

can be executed arbitrarily 

often until a completion 

condition is fulfilled.

Collapsed 

Subprocess

Task
A Task is a unit of 

work, the job to be 

performed.

A Subprocess is a 

decomposable activity. 

It can be collapsed to 

hide the details.

An Expanded Subprocess contains a 

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the 

execution order of activities.

Conditional Flow has a 

condition assigned that 

defines whether or not the 

flow is used.

Default Flow is the default 

branch to be chosen if all 

other conditions evaluate to 

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be 

defined as a Group to show that 

they logically belong together.

Any object can be associated with a 

Text Annotation to provide 

additional documentation.

read modifywrite



Question time

126

Gateways Data

Attaching a data object with an Undirected 
Association to a sequence flow indicates hand‐over 

of information between the activities involved.

A Directed Association indicates information flow. 

A data object can be read at the start of an 

activity or written upon completion.

A Bidirected Association indicates that the data 

object is modified, i.e. read and written during the 

execution of an actvity.

A Data Object represents information flowing 

through the process, such as business documents, 

e‐mails or letters. 

Events Transactions

Swimlanes

activity

Start Event: Catching an event 

starts a new process instance.

Intermediate Event (catching): 
The process can only continue 

once an event has been caught.

Attached Intermediate Event: The 

activity is aborted once an event is 

caught.

Intermediate Event (throwing): 
An event is thrown and the process 

continues.

End Event: An event is thrown 

when the end of the process is 

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically 

showing where the process 

starts or ends.

Receiving and sending 

messages.

Cyclic timer events, points in 

time, time spans or timeouts.

Catching or throwing named 

errors.

Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation handling or 

triggering compensation.

Reacting to changed business 

conditions or integrating 

business rules.

Signalling across different 

processes. One signal thrown 

can be caught multiple times.

Catching or throwing one out of 

a set of events.

Off‐page connectors. Two 

corresponding link events equal 

a sequence flow.

Triggering the immediate 

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing 

branches based on conditions. When merging, it awaits one incoming branch 

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching 

conditions. When merging, it awaits all active incoming branches to 

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal 

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated 

simultaneously. When merging parallel branches it waits for all incoming 

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate 

Activity

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Attached Intermediate Cancel Events indicate 

reactions to the cancellation of a transaction. 

Activities inside the transaction are compensated 

upon cancellation.

Completed activities can be compensated. An 

activity and the corresponding Compensate Activity 

are related using an attached Intermediate 
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes 

information flow across 

organizational boundaries.

Message flow can be attached to 

pools, activities, or message events.

The order of message exchanges 

can be specified by combining 

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent 

responsibilities for activities in a 

process. A pool or a lane can be an 

organization, a role, or a system.

Lanes sub‐divide pools or other 

lanes hierarchically.

Pool
Collapsed Pools hide all internals 

of the contained processes.

Task

Task

~

Collapsed 

Subprocess

Intermediate 

Message Event

Task

Task

Task

Task

Loop 

Activity

Multiple 

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data 

Object 

[state1]

Data 

Object 

[state2]

Conditional

Start Event

Parallel 

Gateway

Parallel 

Gateway

Grouping

End Event

Terminate 

End Event

Data‐based 

Exclusive  

Gateway

Embedded 

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data 

Object

Intermediate 

Timer Event

Sequence 

Flow

Intermediate 

Error Event

Exception 

Flow

Event‐based 

Exclusive  

Gateway Intermediate 

Message Event

Intermediate 

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is 

routed to the subsequent event/task which happens first.

Condition

Default 

Flow

Multiple 

Instances

Loop

Multiple Instances of the 

same activity are started in 

parallel or sequentially, e.g. 

for each line item in an 

order.

Loop Activity is iterated if a 

loop condition is true. The 

condition is either tested 

before or after the activity 

execution.

Ad‐hoc Subprocesses 
contain tasks only. Each task 

can be executed arbitrarily 

often until a completion 

condition is fulfilled.

Collapsed 

Subprocess

Task
A Task is a unit of 

work, the job to be 

performed.

A Subprocess is a 

decomposable activity. 

It can be collapsed to 

hide the details.

An Expanded Subprocess contains a 

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the 

execution order of activities.

Conditional Flow has a 

condition assigned that 

defines whether or not the 

flow is used.

Default Flow is the default 

branch to be chosen if all 

other conditions evaluate to 

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be 

defined as a Group to show that 

they logically belong together.

Any object can be associated with a 

Text Annotation to provide 

additional documentation.

read modifywrite



Question time

127

Gateways Data

Attaching a data object with an Undirected 
Association to a sequence flow indicates hand‐over 

of information between the activities involved.

A Directed Association indicates information flow. 

A data object can be read at the start of an 

activity or written upon completion.

A Bidirected Association indicates that the data 

object is modified, i.e. read and written during the 

execution of an actvity.

A Data Object represents information flowing 

through the process, such as business documents, 

e‐mails or letters. 

Events Transactions

Swimlanes

activity

Start Event: Catching an event 

starts a new process instance.

Intermediate Event (catching): 
The process can only continue 

once an event has been caught.

Attached Intermediate Event: The 

activity is aborted once an event is 

caught.

Intermediate Event (throwing): 
An event is thrown and the process 

continues.

End Event: An event is thrown 

when the end of the process is 

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically 

showing where the process 

starts or ends.

Receiving and sending 

messages.

Cyclic timer events, points in 

time, time spans or timeouts.

Catching or throwing named 

errors.

Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation handling or 

triggering compensation.

Reacting to changed business 

conditions or integrating 

business rules.

Signalling across different 

processes. One signal thrown 

can be caught multiple times.

Catching or throwing one out of 

a set of events.

Off‐page connectors. Two 

corresponding link events equal 

a sequence flow.

Triggering the immediate 

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing 

branches based on conditions. When merging, it awaits one incoming branch 

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching 

conditions. When merging, it awaits all active incoming branches to 

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal 

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated 

simultaneously. When merging parallel branches it waits for all incoming 

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate 

Activity

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Attached Intermediate Cancel Events indicate 

reactions to the cancellation of a transaction. 

Activities inside the transaction are compensated 

upon cancellation.

Completed activities can be compensated. An 

activity and the corresponding Compensate Activity 

are related using an attached Intermediate 
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes 

information flow across 

organizational boundaries.

Message flow can be attached to 

pools, activities, or message events.

The order of message exchanges 

can be specified by combining 

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent 

responsibilities for activities in a 

process. A pool or a lane can be an 

organization, a role, or a system.

Lanes sub‐divide pools or other 

lanes hierarchically.

Pool
Collapsed Pools hide all internals 

of the contained processes.

Task

Task

~

Collapsed 

Subprocess

Intermediate 

Message Event

Task

Task

Task

Task

Loop 

Activity

Multiple 

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data 

Object 

[state1]

Data 

Object 

[state2]

Conditional

Start Event

Parallel 

Gateway

Parallel 

Gateway

Grouping

End Event

Terminate 

End Event

Data‐based 

Exclusive  

Gateway

Embedded 

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data 

Object

Intermediate 

Timer Event

Sequence 

Flow

Intermediate 

Error Event

Exception 

Flow

Event‐based 

Exclusive  

Gateway Intermediate 

Message Event

Intermediate 

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is 

routed to the subsequent event/task which happens first.

Condition

Default 

Flow

Multiple 

Instances

Loop

Multiple Instances of the 

same activity are started in 

parallel or sequentially, e.g. 

for each line item in an 

order.

Loop Activity is iterated if a 

loop condition is true. The 

condition is either tested 

before or after the activity 

execution.

Ad‐hoc Subprocesses 
contain tasks only. Each task 

can be executed arbitrarily 

often until a completion 

condition is fulfilled.

Collapsed 

Subprocess

Task
A Task is a unit of 

work, the job to be 

performed.

A Subprocess is a 

decomposable activity. 

It can be collapsed to 

hide the details.

An Expanded Subprocess contains a 

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the 

execution order of activities.

Conditional Flow has a 

condition assigned that 

defines whether or not the 

flow is used.

Default Flow is the default 

branch to be chosen if all 

other conditions evaluate to 

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be 

defined as a Group to show that 

they logically belong together.

Any object can be associated with a 

Text Annotation to provide 

additional documentation.

read modifywrite



Question time

128

Gateways Data

Attaching a data object with an Undirected 
Association to a sequence flow indicates hand‐over 

of information between the activities involved.

A Directed Association indicates information flow. 

A data object can be read at the start of an 

activity or written upon completion.

A Bidirected Association indicates that the data 

object is modified, i.e. read and written during the 

execution of an actvity.

A Data Object represents information flowing 

through the process, such as business documents, 

e‐mails or letters. 

Events Transactions

Swimlanes

activity

Start Event: Catching an event 

starts a new process instance.

Intermediate Event (catching): 
The process can only continue 

once an event has been caught.

Attached Intermediate Event: The 

activity is aborted once an event is 

caught.

Intermediate Event (throwing): 
An event is thrown and the process 

continues.

End Event: An event is thrown 

when the end of the process is 

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically 

showing where the process 

starts or ends.

Receiving and sending 

messages.

Cyclic timer events, points in 

time, time spans or timeouts.

Catching or throwing named 

errors.

Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation handling or 

triggering compensation.

Reacting to changed business 

conditions or integrating 

business rules.

Signalling across different 

processes. One signal thrown 

can be caught multiple times.

Catching or throwing one out of 

a set of events.

Off‐page connectors. Two 

corresponding link events equal 

a sequence flow.

Triggering the immediate 

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing 

branches based on conditions. When merging, it awaits one incoming branch 

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching 

conditions. When merging, it awaits all active incoming branches to 

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal 

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated 

simultaneously. When merging parallel branches it waits for all incoming 

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate 

Activity

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Attached Intermediate Cancel Events indicate 

reactions to the cancellation of a transaction. 

Activities inside the transaction are compensated 

upon cancellation.

Completed activities can be compensated. An 

activity and the corresponding Compensate Activity 

are related using an attached Intermediate 
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes 

information flow across 

organizational boundaries.

Message flow can be attached to 

pools, activities, or message events.

The order of message exchanges 

can be specified by combining 

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent 

responsibilities for activities in a 

process. A pool or a lane can be an 

organization, a role, or a system.

Lanes sub‐divide pools or other 

lanes hierarchically.

Pool
Collapsed Pools hide all internals 

of the contained processes.

Task

Task

~

Collapsed 

Subprocess

Intermediate 

Message Event

Task

Task

Task

Task

Loop 

Activity

Multiple 

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data 

Object 

[state1]

Data 

Object 

[state2]

Conditional

Start Event

Parallel 

Gateway

Parallel 

Gateway

Grouping

End Event

Terminate 

End Event

Data‐based 

Exclusive  

Gateway

Embedded 

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data 

Object

Intermediate 

Timer Event

Sequence 

Flow

Intermediate 

Error Event

Exception 

Flow

Event‐based 

Exclusive  

Gateway Intermediate 

Message Event

Intermediate 

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is 

routed to the subsequent event/task which happens first.

Condition

Default 

Flow

Multiple 

Instances

Loop

Multiple Instances of the 

same activity are started in 

parallel or sequentially, e.g. 

for each line item in an 

order.

Loop Activity is iterated if a 

loop condition is true. The 

condition is either tested 

before or after the activity 

execution.

Ad‐hoc Subprocesses 
contain tasks only. Each task 

can be executed arbitrarily 

often until a completion 

condition is fulfilled.

Collapsed 

Subprocess

Task
A Task is a unit of 

work, the job to be 

performed.

A Subprocess is a 

decomposable activity. 

It can be collapsed to 

hide the details.

An Expanded Subprocess contains a 

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the 

execution order of activities.

Conditional Flow has a 

condition assigned that 

defines whether or not the 

flow is used.

Default Flow is the default 

branch to be chosen if all 

other conditions evaluate to 

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be 

defined as a Group to show that 

they logically belong together.

Any object can be associated with a 

Text Annotation to provide 

additional documentation.

read modifywrite



Question time

129

Invoice

Invoice

Invoice



130

Gateways Data

Attaching a data object with an Undirected 
Association to a sequence flow indicates hand‐over 

of information between the activities involved.

A Directed Association indicates information flow. 

A data object can be read at the start of an 

activity or written upon completion.

A Bidirected Association indicates that the data 

object is modified, i.e. read and written during the 

execution of an actvity.

A Data Object represents information flowing 

through the process, such as business documents, 

e‐mails or letters. 

Events Transactions

Swimlanes

activity

Start Event: Catching an event 

starts a new process instance.

Intermediate Event (catching): 
The process can only continue 

once an event has been caught.

Attached Intermediate Event: The 

activity is aborted once an event is 

caught.

Intermediate Event (throwing): 
An event is thrown and the process 

continues.

End Event: An event is thrown 

when the end of the process is 

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically 

showing where the process 

starts or ends.

Receiving and sending 

messages.

Cyclic timer events, points in 

time, time spans or timeouts.

Catching or throwing named 

errors.

Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation handling or 

triggering compensation.

Reacting to changed business 

conditions or integrating 

business rules.

Signalling across different 

processes. One signal thrown 

can be caught multiple times.

Catching or throwing one out of 

a set of events.

Off‐page connectors. Two 

corresponding link events equal 

a sequence flow.

Triggering the immediate 

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing 

branches based on conditions. When merging, it awaits one incoming branch 

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching 

conditions. When merging, it awaits all active incoming branches to 

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal 

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated 

simultaneously. When merging parallel branches it waits for all incoming 

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate 

Activity

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Attached Intermediate Cancel Events indicate 

reactions to the cancellation of a transaction. 

Activities inside the transaction are compensated 

upon cancellation.

Completed activities can be compensated. An 

activity and the corresponding Compensate Activity 

are related using an attached Intermediate 
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes 

information flow across 

organizational boundaries.

Message flow can be attached to 

pools, activities, or message events.

The order of message exchanges 

can be specified by combining 

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent 

responsibilities for activities in a 

process. A pool or a lane can be an 

organization, a role, or a system.

Lanes sub‐divide pools or other 

lanes hierarchically.

Pool
Collapsed Pools hide all internals 

of the contained processes.

Task

Task

~

Collapsed 

Subprocess

Intermediate 

Message Event

Task

Task

Task

Task

Loop 

Activity

Multiple 

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data 

Object 

[state1]

Data 

Object 

[state2]

Conditional

Start Event

Parallel 

Gateway

Parallel 

Gateway

Grouping

End Event

Terminate 

End Event

Data‐based 

Exclusive  

Gateway

Embedded 

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data 

Object

Intermediate 

Timer Event

Sequence 

Flow

Intermediate 

Error Event

Exception 

Flow

Event‐based 

Exclusive  

Gateway Intermediate 

Message Event

Intermediate 

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is 

routed to the subsequent event/task which happens first.

Condition

Default 

Flow

Multiple 

Instances

Loop

Multiple Instances of the 

same activity are started in 

parallel or sequentially, e.g. 

for each line item in an 

order.

Loop Activity is iterated if a 

loop condition is true. The 

condition is either tested 

before or after the activity 

execution.

Ad‐hoc Subprocesses 
contain tasks only. Each task 

can be executed arbitrarily 

often until a completion 

condition is fulfilled.

Collapsed 

Subprocess

Task
A Task is a unit of 

work, the job to be 

performed.

A Subprocess is a 

decomposable activity. 

It can be collapsed to 

hide the details.

An Expanded Subprocess contains a 

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the 

execution order of activities.

Conditional Flow has a 

condition assigned that 

defines whether or not the 

flow is used.

Default Flow is the default 

branch to be chosen if all 

other conditions evaluate to 

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be 

defined as a Group to show that 

they logically belong together.

Any object can be associated with a 

Text Annotation to provide 

additional documentation.

Association, again



131

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events, 

indicate start point, state 

changes or final states.

Message: Receiving and 

sending messages.

Timer: Cyclic timer events, 

points in time, time spans or 

timeouts.

Error: Catching or throwing 

named errors.

Cancel: Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation: Handling or 

triggering compensation.

Conditional: Reacting to 

changed business conditions 

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown 

can be caught multiple times.

Multiple: Catching one out of 

a set of events. Throwing all 

events defined

Link: Off‐page connectors. 

Two corresponding link events 

equal a sequence flow.

Terminate: Triggering the 

immediate termination of a 

process.

Escalation: Escalating to 

an higher level of 

responsibility. 

Parallel Multiple: Catching 

all out of a set of parallel 

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t 

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t 

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

 
In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

 

Sequence Flow

defines the execution 

order of activities.

Conditional Flow

has a condition 

assigned that defines 

whether or not the 

flow is used.

Default Flow

is the default branch

to be chosen if all 

other conditions 

evaluate to false.

 

Task

A Task is a unit of work, the job to be 

performed. When marked with a symbol 

it indicates a Sub‐Process, an activity that can 

be refined.

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Event 

Sub‐Process

An Event Sub‐Process is placed into a Process or 

Sub‐Process. It is activated when its start event 

gets triggered and can interrupt the higher level 

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined 

Sub‐Process or Task that is reused in the current 

process.

Task Types
Types specify the nature of 

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution 

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of 

logically related message exchanges.

When marked with a       symbol it 

indicates a Sub‐Conversation, a 

compound conversation element.

A Forked Conversation Link connects 

Communications and multiple 

Participants.

A Conversation Link connects 

Communications and Participants.

Inclusive Gateway
When splitting, one or more 

branches are activated. All 

active incoming branches must 

complete before merging.

Complex Gateway
Complex merging and 

branching behavior that is not 

captured by other gateways.

Exclusive Event‐based Gateway 
(instantiate)
Each occurrence of a subsequent 

event starts a new process 

instance.

Parallel Event‐based Gateway 
(instantiate)
The occurrence of all subsequent 

events starts a new process 

instance.

Pool 

(collapsed)

Multi Instance Pool 

(collapsed)

Communication

Sub‐Conversation

Pool 

(collapsed)
Participant B

The order of message 
exchanges can be 

specified by combining 

message flow and 

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes 
represent responsibilities for 

activities in a process. A pool 

or a lane can be an 

organization, a role, or a 

system. Lanes subdivide pools 

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow 

symbolizes information

flow across organizational 

boundaries. Message flow 

can be attached to pools, 

activities, or message 

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing 

through the process, such as business 

documents, e‐mails, or letters. 

A Data Store is a place where the process can 

read or write data, e.g., a database or a filing 

cabinet. It persists beyond the lifetime of the 

process instance.

A Data Input is an external input for the 

entire process. It can be read by an activity.

A Data Output is a variable available as result 

of the entire process.

A Message is used to depict the contents of a 

communication between two Participants.

A Collection Data Object represents a 

collection of information, e.g., a list of order 

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l 
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task 
represents an Interaction 

(Message Exchange) 

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined 

choreography with several 

Interactions.

Multiple Participants Marker 
denotes a set of 

Participants of the 

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation 

End Event

Timer

Intermediate

Event

Receive Task

Attached 

Intermediate 

Timer Event

Link 

Intermediate 

Event

Manual Task

End

Event

Data 

Store

Link 

Intermediate 

Event

Parallel 

Multiple 

Intermediate 

Event

Text Annotation

Group

Multi Instance 

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached 

Intermediate 

Error Event

Signal

End 

Event

Call Activity

 

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End 

Event

Start

Event

End

Event

Looped 

Sub‐Process 

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography 

Task

Participant A

Participant B

Choreography 

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography 

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly 

one of the outgoing branches. When merging, it awaits 

one incoming branch to complete before triggering the 

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks. 

Sequence flow is routed to the subsequent event/task 

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing 

branches are activated simultaneously. When merging 

parallel branches it waits for all incoming branches to 

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

More data objects

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events, 

indicate start point, state 

changes or final states.

Message: Receiving and 

sending messages.

Timer: Cyclic timer events, 

points in time, time spans or 

timeouts.

Error: Catching or throwing 

named errors.

Cancel: Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation: Handling or 

triggering compensation.

Conditional: Reacting to 

changed business conditions 

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown 

can be caught multiple times.

Multiple: Catching one out of 

a set of events. Throwing all 

events defined

Link: Off‐page connectors. 

Two corresponding link events 

equal a sequence flow.

Terminate: Triggering the 

immediate termination of a 

process.

Escalation: Escalating to 

an higher level of 

responsibility. 

Parallel Multiple: Catching 

all out of a set of parallel 

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t 

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t 

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

 
In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

 

Sequence Flow

defines the execution 

order of activities.

Conditional Flow

has a condition 

assigned that defines 

whether or not the 

flow is used.

Default Flow

is the default branch

to be chosen if all 

other conditions 

evaluate to false.

 

Task

A Task is a unit of work, the job to be 

performed. When marked with a symbol 

it indicates a Sub‐Process, an activity that can 

be refined.

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Event 

Sub‐Process

An Event Sub‐Process is placed into a Process or 

Sub‐Process. It is activated when its start event 

gets triggered and can interrupt the higher level 

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined 

Sub‐Process or Task that is reused in the current 

process.

Task Types
Types specify the nature of 

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution 

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of 

logically related message exchanges.

When marked with a       symbol it 

indicates a Sub‐Conversation, a 

compound conversation element.

A Forked Conversation Link connects 

Communications and multiple 

Participants.

A Conversation Link connects 

Communications and Participants.

Inclusive Gateway
When splitting, one or more 

branches are activated. All 

active incoming branches must 

complete before merging.

Complex Gateway
Complex merging and 

branching behavior that is not 

captured by other gateways.

Exclusive Event‐based Gateway 
(instantiate)
Each occurrence of a subsequent 

event starts a new process 

instance.

Parallel Event‐based Gateway 
(instantiate)
The occurrence of all subsequent 

events starts a new process 

instance.

Pool 

(collapsed)

Multi Instance Pool 

(collapsed)

Communication

Sub‐Conversation

Pool 

(collapsed)
Participant B

The order of message 
exchanges can be 

specified by combining 

message flow and 

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes 
represent responsibilities for 

activities in a process. A pool 

or a lane can be an 

organization, a role, or a 

system. Lanes subdivide pools 

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow 

symbolizes information

flow across organizational 

boundaries. Message flow 

can be attached to pools, 

activities, or message 

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing 

through the process, such as business 

documents, e‐mails, or letters. 

A Data Store is a place where the process can 

read or write data, e.g., a database or a filing 

cabinet. It persists beyond the lifetime of the 

process instance.

A Data Input is an external input for the 

entire process. It can be read by an activity.

A Data Output is a variable available as result 

of the entire process.

A Message is used to depict the contents of a 

communication between two Participants.

A Collection Data Object represents a 

collection of information, e.g., a list of order 

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l 
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task 
represents an Interaction 

(Message Exchange) 

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined 

choreography with several 

Interactions.

Multiple Participants Marker 
denotes a set of 

Participants of the 

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation 

End Event

Timer

Intermediate

Event

Receive Task

Attached 

Intermediate 

Timer Event

Link 

Intermediate 

Event

Manual Task

End

Event

Data 

Store

Link 

Intermediate 

Event

Parallel 

Multiple 

Intermediate 

Event

Text Annotation

Group

Multi Instance 

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached 

Intermediate 

Error Event

Signal

End 

Event

Call Activity

 

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End 

Event

Start

Event

End

Event

Looped 

Sub‐Process 

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography 

Task

Participant A

Participant B

Choreography 

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography 

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly 

one of the outgoing branches. When merging, it awaits 

one incoming branch to complete before triggering the 

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks. 

Sequence flow is routed to the subsequent event/task 

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing 

branches are activated simultaneously. When merging 

parallel branches it waits for all incoming branches to 

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B



Group

132

An arbitrary set of objects can form a group 
(if they logically belong together) 

it has non behavioural effect (only documentation) 

A group is represented by  
rounded corner rectangles with dashed lines 

BPTrends    July, 2004 Introduction to BPMN
 

(c) 2004 Stephen A. White. All Rights Reserved. www.bptrends.com

 
6 

Artifacts 

BPMN was designed to allow modelers and modeling tools some flexibility in extending the basic 
notation and in providing the ability to add context appropriate to a specific modeling situation, 
such as for a vertical market (e.g., insurance or banking). Any number of Artifacts can be added to a 
diagram, as appropriate for the context of the business processes being modeled. The current 
version of the BPMN specification pre-defines only three types of BPD Artifacts, which are: 

 
 

Data Object 

Data Objects are a mechanism to show how 

data is required or produced by activities. 

They are connected to activities through 
Associations. 

 

 
 

 

Group 

A Group is represented by a rounded corner 
rectangle drawn with a dashed line (see the 

figure to the right). The grouping can be used 
for documentation or analysis purposes, but 

does not affect the Sequence Flow. 

 

 
 

 

 

Annotation 

Annotations are a mechanism for a modeler 
to provide additional text information for the 

reader of a BPMN Diagram (see the figure to 
the right). 

 

 

 

Modelers can create their own types of Artifacts, which add more details about how the process is 
performed—quite often to show the inputs and outputs of activities in the Process. However, the 
basic structure of the Process, as determined by the Activities, Gateways, and Sequence Flow, is not 
changed with the addition of Artifacts in the diagram, as you can see by comparing Figure 4 and 
Figure 5.  



133

Example: data objects
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply



134

Example: data objects
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Invoice



135

Example: data objects
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Shipment 
address

the same data object 
can be reused



136

Example: data objects
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Shipment 
address

the same data object 
can be reused 

or simply passed from 
an activity to the  
subsequent one



137

Example: data objects
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Purchase 
order



138

Example: data objects
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Purchase 
order

Purchase 
order

for convenience, 
the same data object 

can appear 
several times



139

Example: data objects
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Purchase 
order

Purchase 
order

Purchase 
order 

[confirmed]

for convenience, 
the same data object 

can appear 
several times 

it can have 
different states



140

Example: data objects
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Purchase 
order

Purchase 
order

Purchase 
order 

[confirmed]

Purchase 
order 

[confirmed]

Purchase 
order 
[paid]

for convenience, 
the same data object 

can appear 
several times 

it can have 
different states



141

Example: data objects
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Purchase 
order

Purchase 
order

Purchase 
order 

[confirmed]

Purchase 
order 

[confirmed]

Purchase 
order 
[paid]

for convenience, 
the same data object 

can appear 
several times 

it can have 
different states



142

Question time: connections?
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Raw 
material



143

Question time: connections?
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Raw 
material



144

Question time: connections?
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Product

Product 
[packaged]



145

Question time: connections?
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Product

Product 
[packaged]



146

Example: data stores
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Warehouse 
DB

data stores 
are used for 

persistent data



147

Example: data stores
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Warehouse 
DB

Suppliers 
catalog

data stores 
are used for 

persistent data



148

Example: data stores
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Warehouse 
DB

Products 
warehouse

Suppliers 
catalog

data stores 
are used for 

persistent data



149

Example: data stores
3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Warehouse 
DB

Products 
warehouse

Suppliers 
catalog

Orders 
DB

data stores 
are used for 

persistent data



80 3 Essential Process Modeling

Fig. 3.14 The order fulfillment example with artifacts

from activity “Obtain raw materials from Supplier 1” to Raw materials, indicates
that Raw materials is an output object for this activity. To avoid cluttering the dia-
gram with data associations that cross sequence flows, we may repeat a data object
multiple times within the same process model. However, all occurrences of a given
object do conceptually refer to the same artifact. For example, in Fig. 3.14 Purchase
order is repeated twice as input to “Check stock availability” and to “Confirm order”
since these two activities are far away from each other in terms of model layout.

Often the output from an activity coincides with the input to a subsequent activity.
For example, once Raw materials have been obtained, these are used by activity
“Manufacture product” to create a Product. The Product in turn is packaged and
sent to the customer by activity “Ship product”. Effectively, data objects allow us
to model the information flow between process activities. Bear in mind, however,
that data objects and their associations with activities cannot replace the sequence
flow. In other words, even if an object is passed from an activity A to an activity B,
we still need to model the sequence flow from A to B. A shorthand notation for
passing an object from an activity to the other is by directly connecting the data
object to the sequence flow between two consecutive activities via an undirected
association. See for example the Shipment address being passed from activity “Get

150

Example: artefacts

artefacts provide  
additional information, 
but can compromise 
diagram readability



151

Example: artefacts

artefacts provide  
additional information, 
but can compromise 
diagram readability

3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply



Call activities

152



100 4 Advanced Process Modeling

Fig. 4.3 A process model for disbursing home loans, laid down over three hierarchical levels via
the use of sub-processes

process model connections, the number of parallel branches, the longest path from a
start to an end event, as well as cosmetic aspects such as the layout, the labels style
(e.g. always use a verb-noun style), the colors palette, the lines thickness, etc. More
information on establishing process modeling guidelines can be found in Chap. 5.

We have shown that we can simplify a process model by first identifying the
content of a sub-process, and then hiding this content by collapsing the sub-process
activity. Sometimes, we may wish to proceed in the opposite direction, meaning that
when modeling a process we already identify activities that can be broken down in
smaller steps, but we intentionally under-specify their content. In other words, we
do not link the sub-process activity to a process model at a lower level capturing
its content (like if by pressing the plus button nothing would happen). The reason
for doing this is to tell the reader that some activities are made up of sub-steps, but
that disclosing the details of these is not relevant. This could be the case of activity
“Ship product” in the order fulfillment example, for which modeling the distinction
between its internal steps for packaging and for shipping is not relevant.

4.2 Process Reuse

By default a sub-process is embedded within its parent process model, and as such
it can only be invoked from within that process model. Often, when modeling a
business process we may need to reuse parts of other process models of the same
organization. For example, a loan provider may reuse the sub-process for signing

Nesting sub-processes: 
home loans

153



100 4 Advanced Process Modeling

Fig. 4.3 A process model for disbursing home loans, laid down over three hierarchical levels via
the use of sub-processes

process model connections, the number of parallel branches, the longest path from a
start to an end event, as well as cosmetic aspects such as the layout, the labels style
(e.g. always use a verb-noun style), the colors palette, the lines thickness, etc. More
information on establishing process modeling guidelines can be found in Chap. 5.

We have shown that we can simplify a process model by first identifying the
content of a sub-process, and then hiding this content by collapsing the sub-process
activity. Sometimes, we may wish to proceed in the opposite direction, meaning that
when modeling a process we already identify activities that can be broken down in
smaller steps, but we intentionally under-specify their content. In other words, we
do not link the sub-process activity to a process model at a lower level capturing
its content (like if by pressing the plus button nothing would happen). The reason
for doing this is to tell the reader that some activities are made up of sub-steps, but
that disclosing the details of these is not relevant. This could be the case of activity
“Ship product” in the order fulfillment example, for which modeling the distinction
between its internal steps for packaging and for shipping is not relevant.

4.2 Process Reuse

By default a sub-process is embedded within its parent process model, and as such
it can only be invoked from within that process model. Often, when modeling a
business process we may need to reuse parts of other process models of the same
organization. For example, a loan provider may reuse the sub-process for signing

Global sub-processes: 
home / student loans

154

suppose the ``Sign loan’’ 
process is defined as a 

separate model:  
it can be reused



Call activities

155

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events, 

indicate start point, state 

changes or final states.

Message: Receiving and 

sending messages.

Timer: Cyclic timer events, 

points in time, time spans or 

timeouts.

Error: Catching or throwing 

named errors.

Cancel: Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation: Handling or 

triggering compensation.

Conditional: Reacting to 

changed business conditions 

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown 

can be caught multiple times.

Multiple: Catching one out of 

a set of events. Throwing all 

events defined

Link: Off‐page connectors. 

Two corresponding link events 

equal a sequence flow.

Terminate: Triggering the 

immediate termination of a 

process.

Escalation: Escalating to 

an higher level of 

responsibility. 

Parallel Multiple: Catching 

all out of a set of parallel 

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t 

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t 

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

 
In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

 

Sequence Flow

defines the execution 

order of activities.

Conditional Flow

has a condition 

assigned that defines 

whether or not the 

flow is used.

Default Flow

is the default branch

to be chosen if all 

other conditions 

evaluate to false.

 

Task

A Task is a unit of work, the job to be 

performed. When marked with a symbol 

it indicates a Sub‐Process, an activity that can 

be refined.

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Event 

Sub‐Process

An Event Sub‐Process is placed into a Process or 

Sub‐Process. It is activated when its start event 

gets triggered and can interrupt the higher level 

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined 

Sub‐Process or Task that is reused in the current 

process.

Task Types
Types specify the nature of 

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution 

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of 

logically related message exchanges.

When marked with a       symbol it 

indicates a Sub‐Conversation, a 

compound conversation element.

A Forked Conversation Link connects 

Communications and multiple 

Participants.

A Conversation Link connects 

Communications and Participants.

Inclusive Gateway
When splitting, one or more 

branches are activated. All 

active incoming branches must 

complete before merging.

Complex Gateway
Complex merging and 

branching behavior that is not 

captured by other gateways.

Exclusive Event‐based Gateway 
(instantiate)
Each occurrence of a subsequent 

event starts a new process 

instance.

Parallel Event‐based Gateway 
(instantiate)
The occurrence of all subsequent 

events starts a new process 

instance.

Pool 

(collapsed)

Multi Instance Pool 

(collapsed)

Communication

Sub‐Conversation

Pool 

(collapsed)
Participant B

The order of message 
exchanges can be 

specified by combining 

message flow and 

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes 
represent responsibilities for 

activities in a process. A pool 

or a lane can be an 

organization, a role, or a 

system. Lanes subdivide pools 

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow 

symbolizes information

flow across organizational 

boundaries. Message flow 

can be attached to pools, 

activities, or message 

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing 

through the process, such as business 

documents, e‐mails, or letters. 

A Data Store is a place where the process can 

read or write data, e.g., a database or a filing 

cabinet. It persists beyond the lifetime of the 

process instance.

A Data Input is an external input for the 

entire process. It can be read by an activity.

A Data Output is a variable available as result 

of the entire process.

A Message is used to depict the contents of a 

communication between two Participants.

A Collection Data Object represents a 

collection of information, e.g., a list of order 

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l 
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task 
represents an Interaction 

(Message Exchange) 

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined 

choreography with several 

Interactions.

Multiple Participants Marker 
denotes a set of 

Participants of the 

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation 

End Event

Timer

Intermediate

Event

Receive Task

Attached 

Intermediate 

Timer Event

Link 

Intermediate 

Event

Manual Task

End

Event

Data 

Store

Link 

Intermediate 

Event

Parallel 

Multiple 

Intermediate 

Event

Text Annotation

Group

Multi Instance 

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached 

Intermediate 

Error Event

Signal

End 

Event

Call Activity

 

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End 

Event

Start

Event

End

Event

Looped 

Sub‐Process 

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography 

Task

Participant A

Participant B

Choreography 

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography 

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly 

one of the outgoing branches. When merging, it awaits 

one incoming branch to complete before triggering the 

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks. 

Sequence flow is routed to the subsequent event/task 

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing 

branches are activated simultaneously. When merging 

parallel branches it waits for all incoming branches to 

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B



4.2 Process Reuse 101

Fig. 4.4 The process model for disbursing student loans invokes the same model for signing loans
used by the process for disbursing home loans, via a call activity

loans contained in the home loan disbursement for other types of loan, such as a
process for disbursing student loans or motor loans.

In BPMN, we can define the content of a sub-process outside its parent process,
by defining the sub-process as a global process model. A global process model is
a process model that is not embedded within any process model, and as such can
be invoked by other process models within the same process model collection. To
indicate that the sub-process being invoked is a global process model, we use the
collapsed sub-process activity with a thicker border (this activity type is called call
activity in BPMN). Coming back to the loan disbursement example of Fig. 4.3, we
can factor out the sub-process for signing loans and define it as a global process
model, so that it can also be invoked by a process model for disbursing student
loans (see Fig. 4.4).

Question Embedded or global sub-process?

Our default choice should be to define sub-processes as global process models
so as to maximize their reusability within our process model collection. Supporting
processes such as payment, invoicing, HR, printing, are good candidates for being
defined as global process models, since they are typically shared by various business
processes within an organization. Besides reusability, another advantage of using
global process models is that any change made to these models will be automati-
cally propagated to all process models that invoke them. In some cases, however,
we may want to keep the changes internal to a specific process. For example, an
invoicing process used for corporate orders settlement would typically be different

Call activities: 
home / student loans

156

thick borders denote 
call activities 

(to global sub-processes)



Global processes: 
advantages

157

Readability: processes tend to be smaller 

Reusability: define once, use many time 

Sharing: any change made to a global process 
is automatically propagated to all models that invoke it



Throwing and catching

158



159

Gateways Data

Attaching a data object with an Undirected 
Association to a sequence flow indicates hand‐over 

of information between the activities involved.

A Directed Association indicates information flow. 

A data object can be read at the start of an 

activity or written upon completion.

A Bidirected Association indicates that the data 

object is modified, i.e. read and written during the 

execution of an actvity.

A Data Object represents information flowing 

through the process, such as business documents, 

e‐mails or letters. 

Events Transactions

Swimlanes

activity

Start Event: Catching an event 

starts a new process instance.

Intermediate Event (catching): 
The process can only continue 

once an event has been caught.

Attached Intermediate Event: The 

activity is aborted once an event is 

caught.

Intermediate Event (throwing): 
An event is thrown and the process 

continues.

End Event: An event is thrown 

when the end of the process is 

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically 

showing where the process 

starts or ends.

Receiving and sending 

messages.

Cyclic timer events, points in 

time, time spans or timeouts.

Catching or throwing named 

errors.

Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation handling or 

triggering compensation.

Reacting to changed business 

conditions or integrating 

business rules.

Signalling across different 

processes. One signal thrown 

can be caught multiple times.

Catching or throwing one out of 

a set of events.

Off‐page connectors. Two 

corresponding link events equal 

a sequence flow.

Triggering the immediate 

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing 

branches based on conditions. When merging, it awaits one incoming branch 

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching 

conditions. When merging, it awaits all active incoming branches to 

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal 

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated 

simultaneously. When merging parallel branches it waits for all incoming 

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate 

Activity

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Attached Intermediate Cancel Events indicate 

reactions to the cancellation of a transaction. 

Activities inside the transaction are compensated 

upon cancellation.

Completed activities can be compensated. An 

activity and the corresponding Compensate Activity 

are related using an attached Intermediate 
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes 

information flow across 

organizational boundaries.

Message flow can be attached to 

pools, activities, or message events.

The order of message exchanges 

can be specified by combining 

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent 

responsibilities for activities in a 

process. A pool or a lane can be an 

organization, a role, or a system.

Lanes sub‐divide pools or other 

lanes hierarchically.

Pool
Collapsed Pools hide all internals 

of the contained processes.

Task

Task

~

Collapsed 

Subprocess

Intermediate 

Message Event

Task

Task

Task

Task

Loop 

Activity

Multiple 

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data 

Object 

[state1]

Data 

Object 

[state2]

Conditional

Start Event

Parallel 

Gateway

Parallel 

Gateway

Grouping

End Event

Terminate 

End Event

Data‐based 

Exclusive  

Gateway

Embedded 

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data 

Object

Intermediate 

Timer Event

Sequence 

Flow

Intermediate 

Error Event

Exception 

Flow

Event‐based 

Exclusive  

Gateway Intermediate 

Message Event

Intermediate 

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is 

routed to the subsequent event/task which happens first.

Condition

Default 

Flow

Multiple 

Instances

Loop

Multiple Instances of the 

same activity are started in 

parallel or sequentially, e.g. 

for each line item in an 

order.

Loop Activity is iterated if a 

loop condition is true. The 

condition is either tested 

before or after the activity 

execution.

Ad‐hoc Subprocesses 
contain tasks only. Each task 

can be executed arbitrarily 

often until a completion 

condition is fulfilled.

Collapsed 

Subprocess

Task
A Task is a unit of 

work, the job to be 

performed.

A Subprocess is a 

decomposable activity. 

It can be collapsed to 

hide the details.

An Expanded Subprocess contains a 

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the 

execution order of activities.

Conditional Flow has a 

condition assigned that 

defines whether or not the 

flow is used.

Default Flow is the default 

branch to be chosen if all 

other conditions evaluate to 

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be 

defined as a Group to show that 

they logically belong together.

Any object can be associated with a 

Text Annotation to provide 

additional documentation.

Attached events



160

Recovery from faults: 
image manipulation
Petri Net Transformations for Business Processes – A Survey 51

Legend

u
t

e
m

l

fail

f

Start event

End event

Error exception event –
Cancel Region

Task

XOR-split –
Exclusive Choice

XOR-join –
Simple Merge

AND-split –
Parallel Split

AND-join –
Synchonization

a b Sequence flow from – Sequence

[redo]
[image small 
enough]

[image too big]

Fig. 3. The example process as a BPMN process

transformation itself. The section focuses on BPMN version 1.0, because at the
time that the transformation was developed that was the current version. There-
fore, comments on BPMN apply to version 1.0 only.

3.1 Language

BPMN is a rich language that provides the modeler with a large collection of
object types to represent various aspects of a business process, including the
control-flow, data, resources and exceptions. BPMN is mainly meant for model-
ing business processes at a conceptual level, meaning that it is mainly intended
for drawing process models that will be used for communication between stake-
holders in the processes. As a consequence, formal rigor and conciseness were
not primary concerns when developing the BPMN specification.

The three types of BPMN objects that can be used to represent the control-
flow aspect of a process are activities, events, gateways. Many subtypes of these
objects exist. Control-flow objects can be connected by sequence flows, which
are directed arcs that represent the flow of control from one object to the next.
Figure 3 illustrates some of these objects, by representing the example process
in BPMN and by relating the object types to the workflow patterns explained
in Sect. 2.2.

3.2 Transformation Challenges

Due to the large number of object types that constitute BPMN it is hard to
define a mapping and show (or prove) that the mapping works for all possible
combinations of these object types. Especially, because the mapping of a com-
position of object types is not the same as the composition of the mapping of
those object types. This complicates, for example, defining mapping rules for
interruptions of sub-process invocations.

4.5 Handling Exceptions 117

Fig. 4.19 Error events model internal exceptions

The error event is depicted as an event with a lightning marker. Following the
BPMN conventions for throwing and catching events, the lightning is empty for the
catching intermediate event and full for the end throwing event.

An example of error events is shown in Fig. 4.19 in the context of our order ful-
fillment process. If there is an out of stock exception, the acquisition of raw materi-
als is interrupted and the recovery procedure is triggered, which in this case simply
consists of a task to notify the customer before aborting the process. In terms of
token semantics, upon throwing an end error event, all tokens are removed from
the enclosing sub-process (causing its interruption), and one token is sent through
the exception flow emanating from the boundary error event. There is no restriction
on the modeling elements we can put in the exception flow to model the recovery
procedure. Typically, we would complete the exception flow with an end terminate
event to abort the process, or wire this flow back to the normal sequence flow if the
exception has been properly handled.

4.5.3 External Exceptions

An exception may also be caused by an external event occurring during an activity.
For example, while checking the stock availability for the product in a purchase
order, the Seller may receive an order cancellation from the customer. Upon this
request, the Seller should interrupt the stock availability check and handle the order
cancellation. Scenarios like the above are called unsolicited exceptions since they
originate externally to the process. They can be captured by attaching a catching
intermediate message event to an activity’s boundary, as shown in Fig. 4.20. From
a token semantics, when the intermediate message event is triggered, the token is
removed from the enclosing activity, consequently causing the activity interruption,
and sent through the exception flow emanating from the boundary event, to perform
the recovery procedure.

the lightning annotation  
denotes an error-catching event 



161

Throwing and catching: 
order fulfillment

the lightning annotation 
denotes a throwing event: 
it models an out-of-stock 

exception

4.5 Handling Exceptions 117

Fig. 4.19 Error events model internal exceptions

The error event is depicted as an event with a lightning marker. Following the
BPMN conventions for throwing and catching events, the lightning is empty for the
catching intermediate event and full for the end throwing event.

An example of error events is shown in Fig. 4.19 in the context of our order ful-
fillment process. If there is an out of stock exception, the acquisition of raw materi-
als is interrupted and the recovery procedure is triggered, which in this case simply
consists of a task to notify the customer before aborting the process. In terms of
token semantics, upon throwing an end error event, all tokens are removed from
the enclosing sub-process (causing its interruption), and one token is sent through
the exception flow emanating from the boundary error event. There is no restriction
on the modeling elements we can put in the exception flow to model the recovery
procedure. Typically, we would complete the exception flow with an end terminate
event to abort the process, or wire this flow back to the normal sequence flow if the
exception has been properly handled.

4.5.3 External Exceptions

An exception may also be caused by an external event occurring during an activity.
For example, while checking the stock availability for the product in a purchase
order, the Seller may receive an order cancellation from the customer. Upon this
request, the Seller should interrupt the stock availability check and handle the order
cancellation. Scenarios like the above are called unsolicited exceptions since they
originate externally to the process. They can be captured by attaching a catching
intermediate message event to an activity’s boundary, as shown in Fig. 4.20. From
a token semantics, when the intermediate message event is triggered, the token is
removed from the enclosing activity, consequently causing the activity interruption,
and sent through the exception flow emanating from the boundary event, to perform
the recovery procedure.



162

Throwing and catching: 
order fulfillment4.5 Handling Exceptions 117

Fig. 4.19 Error events model internal exceptions

The error event is depicted as an event with a lightning marker. Following the
BPMN conventions for throwing and catching events, the lightning is empty for the
catching intermediate event and full for the end throwing event.

An example of error events is shown in Fig. 4.19 in the context of our order ful-
fillment process. If there is an out of stock exception, the acquisition of raw materi-
als is interrupted and the recovery procedure is triggered, which in this case simply
consists of a task to notify the customer before aborting the process. In terms of
token semantics, upon throwing an end error event, all tokens are removed from
the enclosing sub-process (causing its interruption), and one token is sent through
the exception flow emanating from the boundary error event. There is no restriction
on the modeling elements we can put in the exception flow to model the recovery
procedure. Typically, we would complete the exception flow with an end terminate
event to abort the process, or wire this flow back to the normal sequence flow if the
exception has been properly handled.

4.5.3 External Exceptions

An exception may also be caused by an external event occurring during an activity.
For example, while checking the stock availability for the product in a purchase
order, the Seller may receive an order cancellation from the customer. Upon this
request, the Seller should interrupt the stock availability check and handle the order
cancellation. Scenarios like the above are called unsolicited exceptions since they
originate externally to the process. They can be captured by attaching a catching
intermediate message event to an activity’s boundary, as shown in Fig. 4.20. From
a token semantics, when the intermediate message event is triggered, the token is
removed from the enclosing activity, consequently causing the activity interruption,
and sent through the exception flow emanating from the boundary event, to perform
the recovery procedure.

end terminate event: 
causes the immediate  

cessation of the current 
process instance 

(and of any sub-process, 
but not of the parent process if any)



Choreographies

163



164

Guess the animal



165

Single views



166

Global view



167

A group of blind men heard that a strange animal, called an elephant, had been brought to the town, but none of them were aware of its shape and form. 
Out of curiosity, they said: "We must inspect and know it by touch, of which we are capable". So, they sought it out, and when they found it they groped about it. 
The first person, whose hand landed on the trunk, said, "This being is like a thick snake". 
For another one whose hand reached its ear, it seemed like a kind of fan. 
As for another person, whose hand was upon its leg, said, the elephant is a pillar like a tree-trunk. 
The blind man who placed his hand upon its side said the elephant, "is a wall". 
Another who felt its tail, described it as a rope. 
The last felt its tusk, stating the elephant is that which is hard, smooth and like a spear.

Global view



Choreography

168

A choreography defines the sequence of  
interaction between participants 

A choreography does not exists in a pool  
and it is not executable 

It describes how the participants are supposed to behave 

a choreography can also use message data objects



Choreography task

169

316                 Business Process Modeling Notation, v2.0

12.4.1 Choreography Task

A Choreography Task is an atomic Activity in a Choreography Process. It represents an Interaction, which is a 

coherent set (1 or more) of Message exchanges between two (2) Participants. Using a Collaboration diagram to view 

these elements (see page 143 for more information on Collaboration), we would see the two (2) Pools representing the 

two (2) Participants of the Interaction (see Figure 12.7). The communication between the Participants is shown as a 

Message Flow.

Figure 12.7 - A Collaboration view of Choreography Task elements

In a Choreography diagram, this Interaction is collapsed into a single object, a Choreography Task. The name of 

the Choreography Task and each of the Participants are all displayed in the different bands that make up the shape’s 

graphical notation. There are two (2) more Participant Bands and one Task Name Band (see Figure 12.8).

Figure 12.8 - A Choreography Task

P
a

rt
ic

ip
a

n
t 

A
P

a
rt

ic
ip

a
n

t 
B

Choreo graphy 

Task Name

Participant 1

Pa rticipant 2

Task Name  

Ban d

Pa rtic ip ant 

Ba nd

Pa rtic ip ant 

Ba nd

Business Process Modeling Notation, v2.0        317

Figure 12.9 - A Choreography Task

The interaction defined by a Choreography Task can be shown in an expanded format through a Collaboration 

diagram (see Figure 12.7—see page 143 for more information on Collaborations). In the Collaboration view, the 

Participants of the Choreography Task Participant Band’s will be represented by Pools. The interaction between 

them will be a Message Flow.

Figure 12.10 - A two-way Choreography Task

P
a

rt
ic

ip
a

nt
 A

P
a

rt
ic

ip
a
n

t 
B

Receive 

Message

Send 

Message

Initiating 

Message

Choreography 

Task Name

Participant A

Participant B

Ini tia ting 

Message

Return 

Message

A choreography task is an activity in a choreography 
 that consists of a set (one or more) communications  

A choreography task involves two or more participants 
that are displayed in different bands 

top/bottom band positioning 
is inessential



Choreography flow

170

Ordinary sequence flow and gateways  
are used within choreographies  

to show the sequence of tasks involved 

Business Process Modeling Notation, v2.0        313

12.3.1 Sequence Flow

Sequence Flow are used within Choreographies to show the sequence of the Choreography Activities, which 

may have intervening Gateways. They are used in the same way as they are in Processes. They are only allowed to 

connect with other Flow Objects. For Processes, they can only connect Events, Gateways, and Activities. For 

Choreographies, they can only connect Events, Gateways, and Choreography Activities (see Figure 12.5).

Figure 12.5 - The use of Sequence Flow in a Choreography

There are two additional variations of Sequence Flow:

• Conditional Sequence Flow: Conditions can be added to Sequence Flow in two situations:

• From Gateways: Outgoing Sequence Flow have conditions for Exclusive and Inclusive Gateways. The 

data referenced in the conditions must be visible to two (2) or more Participants in the Choreography. The data 

becomes visible if it is part of a Message that had been sent (previously) within the Choreography. See pages 

375 and 383 for more information about how Exclusive and Inclusive Gateways are used in 

Choreography.

• From Choreography Activities: Outgoing Sequence Flow may have conditions for Choreography 

Activities. Since these act similar to Inclusive Gateways, the Conditional Sequence Flow can be used in 

Choreographies. The conditions have the same restrictions that apply to the visibility of the data for 

Gateways.

• Default Sequence Flow: For Exclusive Gateways, Inclusive Gateways, and Choreography Activities 

that have Conditional Sequence Flow, one of the outgoing Sequence Flow may be a Default Sequence Flow. 

Because the other outgoing Sequence Flow will have appropriately visible of data as described above, the 

Participants would know if all the other conditions would be false, thus the Default Sequence Flow would be 

selected and the Choreography would move down that Sequence Flow.

In some applications it is useful to allow more Messages to be sent between Participants when a Choreography is 

carried out than are contained the Choreography model.  This enables Participants to exchange other Messages as 

needed without changing the Choreography.  There are two ways to specify this:

• If the isClosed attribute of a Choreography has a value of false or no value, then Participants MAY send 

Messages to each other without additional Choreography Activities in the Choreography.  Unmodeled 

messaging can be restricted on particular Sequence Flow in the Choreography, see next bullet.  If the isClosed 

attribute of a Choreography has a value of true, then Participants MAY NOT send Messages to each other 

without additional Choreography Activities in the Choreography.  This restriction overrides any unmodeled 

messaging allowed by Sequence Flow in the next bullet.

P lac e Order

B uy er

S ell er

C on firm  Orde r

Buy er

Sel ler

S equ enc e F l ow  w i ll 

d efi ne the order of 

C h oreog raphy  e lem en ts

the initiator of the second interaction 
must be involved in the previous one



A large choreography

171

312                 Business Process Modeling Notation, v2.0

Figure 12.4 - The corresponding Choreography diagram logistics example

12.2 Data

A Choreography does not have a central control mechanism and, thus, there is no mechanism for maintaining any 

central Process (Choreography) data. Thus, any element in a Process that would normally depend on conditional or 

assignment expressions, would not have any central source for this data to be maintained and understood by all the 

Participants involved in the Choreography. 

As mentioned above, neither Data Objects nor Repositories are used in Choreographies. Both of these elements 

are used exclusively in Processes and require the concept of a central locus of control. Data Objects are basically 

variables and there would be no central system to manage them. Data can be used in expressions that are used in 

Exclusive Gateways, but only that data which has been sent through a Message in the Choreography.

12.3 Use of BPMN Common Elements

Some BPMN elements are common to both Process and Choreography diagrams, as well as Collaboration; they 

are used in these diagrams. The next few sections will describe the use of Messages, Message Flow, Participants, 

Sequence Flow, Artifacts, Correlations, Expressions, and Services in Choreography. 

The key graphical elements of Gateways and Events are also common to both Choreography and Process. Since 

their usage has a large impact, they are described in major sections of this chapter (see page 369 for Events and page 375 

for Gateways).

Planne d Ord er 

Vari ati ons

S upp lier

Re tai ler

Deliver 
Checkpoint 

Request

S uppl ier

Re tai ler

Order & Delivery 
Variations

Sup pli er

Reta ile r

Shipper

S upp lie r

Provid e Item

Sh ipp er

Su ppli er

De liver Item

Con signe e

S upp lie r

Provid e Item

Consign ee

Su ppli er

De liver Item

Sup pli er

Sh ippe r

Sup pli er

Co nsign ee

Update P O 

and  Del ivery 

S ch edule

S upp lie r

Reta ile r

Accept PO and 
Delivery 

Schedule

Sup pli er

Reta ile r

PO and Delivery 
Schedule Mods

Su ppl ier

Re tailer

Confi rma tio n of 

Deli ve ry 

Sched ule

Consig nee

Re tai ler

Retaile r 

Co nfi rmation  

Re ce ived

Co nsign ee

Retaile r

F ina lized  PO 

a nd Deli ve ry 

Sche dule

S upp lier

Re tai ler



From collaborations to 
choreographies

172



Projection (on Student)

173



Projection (on Teacher)

174



From choreographies to 
collaborations

175



From choreographies to 
collaborations

176

Is this what we expect?



Exercise

177

Modify the collaboration diagram to enforce 
the assignment of at least one exercise



BPMN basics 
BPMN key features 

More on BPMN 
BPMN semantics

178



BPMN execution semantics

179



Some sample paragraphs

180

The execution semantics are described informally (textually), and this is based on prior 
research involving the formalization of execution semantics using mathematical formalisms. 

A Process is instantiated when one of its Start Events occurs. 

A Process can also be started via an Event-Based Gateway or a Receive Task that has no 
incoming Sequence Flows  

Each Start Event that occurs creates a token on its outgoing Sequence Flows, which is 
followed as described by the semantics of the other Process elements.  

A Process instance is completed, if and only if the following three conditions hold:  
•If the instance was created through an instantiating Parallel Gateway, then all subsequent 

Events (of that Gateway) MUST have occurred.  
•There is no token remaining within the Process instance.  
•No Activity of the Process is still active. 

For a Process instance to become completed, all tokens in that instance MUST reach an end 
node.  
A token reaching an End Event triggers the behavior associated with the Event type.  
If a token reaches a Terminate End Event, the entire Process is abnormally terminated.



BPMN formal semantics?

181

Many attempts: 
Abstract State Machines (ASM) 

Term Rewriting Systems 
Graph Rewrite Systems 

Process Algebras 
Temporal Logic 

… 
Petri nets 

(Usual difficulties with OR-join semantics) 



Exercises 
(modelling with BPMN)

182



Exercises

183

Model the following fragments of business processes  
for assessing loan applications:



Example: loan application

184

Once a loan application has been approved by the loan provider, an 
acceptance pack is prepared and sent to the customer.  

The acceptance pack includes a repayment schedule which the 
customer needs to agree upon by sending the signed documents 
back to the loan provider.  

The latter then verifies the repayment agreement:  
if the applicant disagreed with the repayment schedule, the loan 
provider cancels the application;  
if the applicant agreed, the loan provider approves the application.  
In either case, the process completes with the loan provider notifying 
the applicant of the application status.



185

3.5 Recap 89

3.5 Recap

At the end of this chapter, we should be able to understand and produce basic pro-
cess models in BPMN. A basic BPMN model includes simple activities, events,
gateways, data objects, pools, and lanes. Activities capture units of work within a
process. Events define the start and end of a process, and signal something that hap-
pens during the execution of it. Gateways model exclusive and inclusive decisions,
merges, parallelism and synchronization, and repetition. We studied the difference
between process model and process instance. A process model depicts all the possi-
ble ways a given business process can be executed, while a process instance captures
one specific process execution out of all possible ones. The progress, or state, of a
process instance is represented by tokens. Using tokens we can define the behavior
of gateways.

We also learned how to use data objects to model the information flow between
activities and events. A data object captures a physical or an electronic artifact re-
quired to execute an activity or trigger an event, or that results from the execution
of an activity or an event occurrence. Data objects can be stored in a data store
like a database or file cabinet such that they can be persisted beyond the process
instance where they are created. Furthermore, we saw how pools and lanes can be
used to model both human and non-human resources that perform process activi-
ties. Pools generally model resource classes while lanes are used to partition pools.
The interaction between pools is captured by message flows. Message flows can be
directly attached to the boundary of a pool, should the details of the interaction not
be relevant.

Activities, events, gateways, artifacts, and resources belong to the main model-
ing perspectives of a business process. The functional perspective captures the ac-
tivities that are performed in a business process while the control-flow perspective
combines these activities and related events in a given order. The data perspective
covers the artifacts manipulated in the process while the resource perspective covers
the resources that perform the various activities. In the next chapter, we will learn
how to model complex business processes by delving into the various extensions of
the core BPMN elements that we presented here.

3.6 Solutions to Exercises

Solution 3.1Once a loan application has been approved by the loan provider, an 
acceptance pack is prepared and sent to the customer.  

Example: loan application



186

3.5 Recap 89

3.5 Recap

At the end of this chapter, we should be able to understand and produce basic pro-
cess models in BPMN. A basic BPMN model includes simple activities, events,
gateways, data objects, pools, and lanes. Activities capture units of work within a
process. Events define the start and end of a process, and signal something that hap-
pens during the execution of it. Gateways model exclusive and inclusive decisions,
merges, parallelism and synchronization, and repetition. We studied the difference
between process model and process instance. A process model depicts all the possi-
ble ways a given business process can be executed, while a process instance captures
one specific process execution out of all possible ones. The progress, or state, of a
process instance is represented by tokens. Using tokens we can define the behavior
of gateways.

We also learned how to use data objects to model the information flow between
activities and events. A data object captures a physical or an electronic artifact re-
quired to execute an activity or trigger an event, or that results from the execution
of an activity or an event occurrence. Data objects can be stored in a data store
like a database or file cabinet such that they can be persisted beyond the process
instance where they are created. Furthermore, we saw how pools and lanes can be
used to model both human and non-human resources that perform process activi-
ties. Pools generally model resource classes while lanes are used to partition pools.
The interaction between pools is captured by message flows. Message flows can be
directly attached to the boundary of a pool, should the details of the interaction not
be relevant.

Activities, events, gateways, artifacts, and resources belong to the main model-
ing perspectives of a business process. The functional perspective captures the ac-
tivities that are performed in a business process while the control-flow perspective
combines these activities and related events in a given order. The data perspective
covers the artifacts manipulated in the process while the resource perspective covers
the resources that perform the various activities. In the next chapter, we will learn
how to model complex business processes by delving into the various extensions of
the core BPMN elements that we presented here.

3.6 Solutions to Exercises

Solution 3.1The acceptance pack includes a repayment schedule which the 
customer needs to agree upon by sending the signed documents 
back to the loan provider.

Gateways Data

Attaching a data object with an Undirected 
Association to a sequence flow indicates hand‐over 

of information between the activities involved.

A Directed Association indicates information flow. 

A data object can be read at the start of an 

activity or written upon completion.

A Bidirected Association indicates that the data 

object is modified, i.e. read and written during the 

execution of an actvity.

A Data Object represents information flowing 

through the process, such as business documents, 

e‐mails or letters. 

Events Transactions

Swimlanes

activity

Start Event: Catching an event 

starts a new process instance.

Intermediate Event (catching): 
The process can only continue 

once an event has been caught.

Attached Intermediate Event: The 

activity is aborted once an event is 

caught.

Intermediate Event (throwing): 
An event is thrown and the process 

continues.

End Event: An event is thrown 

when the end of the process is 

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically 

showing where the process 

starts or ends.

Receiving and sending 

messages.

Cyclic timer events, points in 

time, time spans or timeouts.

Catching or throwing named 

errors.

Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation handling or 

triggering compensation.

Reacting to changed business 

conditions or integrating 

business rules.

Signalling across different 

processes. One signal thrown 

can be caught multiple times.

Catching or throwing one out of 

a set of events.

Off‐page connectors. Two 

corresponding link events equal 

a sequence flow.

Triggering the immediate 

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing 

branches based on conditions. When merging, it awaits one incoming branch 

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching 

conditions. When merging, it awaits all active incoming branches to 

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal 

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated 

simultaneously. When merging parallel branches it waits for all incoming 

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate 

Activity

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Attached Intermediate Cancel Events indicate 

reactions to the cancellation of a transaction. 

Activities inside the transaction are compensated 

upon cancellation.

Completed activities can be compensated. An 

activity and the corresponding Compensate Activity 

are related using an attached Intermediate 
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes 

information flow across 

organizational boundaries.

Message flow can be attached to 

pools, activities, or message events.

The order of message exchanges 

can be specified by combining 

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent 

responsibilities for activities in a 

process. A pool or a lane can be an 

organization, a role, or a system.

Lanes sub‐divide pools or other 

lanes hierarchically.

Pool
Collapsed Pools hide all internals 

of the contained processes.

Task

Task

~

Collapsed 

Subprocess

Intermediate 

Message Event

Task

Task

Task

Task

Loop 

Activity

Multiple 

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data 

Object 

[state1]

Data 

Object 

[state2]

Conditional

Start Event

Parallel 

Gateway

Parallel 

Gateway

Grouping

End Event

Terminate 

End Event

Data‐based 

Exclusive  

Gateway

Embedded 

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data 

Object

Intermediate 

Timer Event

Sequence 

Flow

Intermediate 

Error Event

Exception 

Flow

Event‐based 

Exclusive  

Gateway Intermediate 

Message Event

Intermediate 

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is 

routed to the subsequent event/task which happens first.

Condition

Default 

Flow

Multiple 

Instances

Loop

Multiple Instances of the 

same activity are started in 

parallel or sequentially, e.g. 

for each line item in an 

order.

Loop Activity is iterated if a 

loop condition is true. The 

condition is either tested 

before or after the activity 

execution.

Ad‐hoc Subprocesses 
contain tasks only. Each task 

can be executed arbitrarily 

often until a completion 

condition is fulfilled.

Collapsed 

Subprocess

Task
A Task is a unit of 

work, the job to be 

performed.

A Subprocess is a 

decomposable activity. 

It can be collapsed to 

hide the details.

An Expanded Subprocess contains a 

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the 

execution order of activities.

Conditional Flow has a 

condition assigned that 

defines whether or not the 

flow is used.

Default Flow is the default 

branch to be chosen if all 

other conditions evaluate to 

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be 

defined as a Group to show that 

they logically belong together.

Any object can be associated with a 

Text Annotation to provide 

additional documentation.

Example: loan application



187

3.5 Recap 89

3.5 Recap

At the end of this chapter, we should be able to understand and produce basic pro-
cess models in BPMN. A basic BPMN model includes simple activities, events,
gateways, data objects, pools, and lanes. Activities capture units of work within a
process. Events define the start and end of a process, and signal something that hap-
pens during the execution of it. Gateways model exclusive and inclusive decisions,
merges, parallelism and synchronization, and repetition. We studied the difference
between process model and process instance. A process model depicts all the possi-
ble ways a given business process can be executed, while a process instance captures
one specific process execution out of all possible ones. The progress, or state, of a
process instance is represented by tokens. Using tokens we can define the behavior
of gateways.

We also learned how to use data objects to model the information flow between
activities and events. A data object captures a physical or an electronic artifact re-
quired to execute an activity or trigger an event, or that results from the execution
of an activity or an event occurrence. Data objects can be stored in a data store
like a database or file cabinet such that they can be persisted beyond the process
instance where they are created. Furthermore, we saw how pools and lanes can be
used to model both human and non-human resources that perform process activi-
ties. Pools generally model resource classes while lanes are used to partition pools.
The interaction between pools is captured by message flows. Message flows can be
directly attached to the boundary of a pool, should the details of the interaction not
be relevant.

Activities, events, gateways, artifacts, and resources belong to the main model-
ing perspectives of a business process. The functional perspective captures the ac-
tivities that are performed in a business process while the control-flow perspective
combines these activities and related events in a given order. The data perspective
covers the artifacts manipulated in the process while the resource perspective covers
the resources that perform the various activities. In the next chapter, we will learn
how to model complex business processes by delving into the various extensions of
the core BPMN elements that we presented here.

3.6 Solutions to Exercises

Solution 3.1

The latter then verifies the repayment agreement:  
if the applicant disagreed with the repayment schedule, the loan 
provider cancels the application;  
if the applicant agreed, the loan provider approves the application. 

Gateways Data

Attaching a data object with an Undirected 
Association to a sequence flow indicates hand‐over 

of information between the activities involved.

A Directed Association indicates information flow. 

A data object can be read at the start of an 

activity or written upon completion.

A Bidirected Association indicates that the data 

object is modified, i.e. read and written during the 

execution of an actvity.

A Data Object represents information flowing 

through the process, such as business documents, 

e‐mails or letters. 

Events Transactions

Swimlanes

activity

Start Event: Catching an event 

starts a new process instance.

Intermediate Event (catching): 
The process can only continue 

once an event has been caught.

Attached Intermediate Event: The 

activity is aborted once an event is 

caught.

Intermediate Event (throwing): 
An event is thrown and the process 

continues.

End Event: An event is thrown 

when the end of the process is 

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically 

showing where the process 

starts or ends.

Receiving and sending 

messages.

Cyclic timer events, points in 

time, time spans or timeouts.

Catching or throwing named 

errors.

Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation handling or 

triggering compensation.

Reacting to changed business 

conditions or integrating 

business rules.

Signalling across different 

processes. One signal thrown 

can be caught multiple times.

Catching or throwing one out of 

a set of events.

Off‐page connectors. Two 

corresponding link events equal 

a sequence flow.

Triggering the immediate 

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing 

branches based on conditions. When merging, it awaits one incoming branch 

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching 

conditions. When merging, it awaits all active incoming branches to 

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal 

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated 

simultaneously. When merging parallel branches it waits for all incoming 

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate 

Activity

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Attached Intermediate Cancel Events indicate 

reactions to the cancellation of a transaction. 

Activities inside the transaction are compensated 

upon cancellation.

Completed activities can be compensated. An 

activity and the corresponding Compensate Activity 

are related using an attached Intermediate 
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes 

information flow across 

organizational boundaries.

Message flow can be attached to 

pools, activities, or message events.

The order of message exchanges 

can be specified by combining 

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent 

responsibilities for activities in a 

process. A pool or a lane can be an 

organization, a role, or a system.

Lanes sub‐divide pools or other 

lanes hierarchically.

Pool
Collapsed Pools hide all internals 

of the contained processes.

Task

Task

~

Collapsed 

Subprocess

Intermediate 

Message Event

Task

Task

Task

Task

Loop 

Activity

Multiple 

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data 

Object 

[state1]

Data 

Object 

[state2]

Conditional

Start Event

Parallel 

Gateway

Parallel 

Gateway

Grouping

End Event

Terminate 

End Event

Data‐based 

Exclusive  

Gateway

Embedded 

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data 

Object

Intermediate 

Timer Event

Sequence 

Flow

Intermediate 

Error Event

Exception 

Flow

Event‐based 

Exclusive  

Gateway Intermediate 

Message Event

Intermediate 

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is 

routed to the subsequent event/task which happens first.

Condition

Default 

Flow

Multiple 

Instances

Loop

Multiple Instances of the 

same activity are started in 

parallel or sequentially, e.g. 

for each line item in an 

order.

Loop Activity is iterated if a 

loop condition is true. The 

condition is either tested 

before or after the activity 

execution.

Ad‐hoc Subprocesses 
contain tasks only. Each task 

can be executed arbitrarily 

often until a completion 

condition is fulfilled.

Collapsed 

Subprocess

Task
A Task is a unit of 

work, the job to be 

performed.

A Subprocess is a 

decomposable activity. 

It can be collapsed to 

hide the details.

An Expanded Subprocess contains a 

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the 

execution order of activities.

Conditional Flow has a 

condition assigned that 

defines whether or not the 

flow is used.

Default Flow is the default 

branch to be chosen if all 

other conditions evaluate to 

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be 

defined as a Group to show that 

they logically belong together.

Any object can be associated with a 

Text Annotation to provide 

additional documentation.

Example: loan application



188

3.5 Recap 89

3.5 Recap

At the end of this chapter, we should be able to understand and produce basic pro-
cess models in BPMN. A basic BPMN model includes simple activities, events,
gateways, data objects, pools, and lanes. Activities capture units of work within a
process. Events define the start and end of a process, and signal something that hap-
pens during the execution of it. Gateways model exclusive and inclusive decisions,
merges, parallelism and synchronization, and repetition. We studied the difference
between process model and process instance. A process model depicts all the possi-
ble ways a given business process can be executed, while a process instance captures
one specific process execution out of all possible ones. The progress, or state, of a
process instance is represented by tokens. Using tokens we can define the behavior
of gateways.

We also learned how to use data objects to model the information flow between
activities and events. A data object captures a physical or an electronic artifact re-
quired to execute an activity or trigger an event, or that results from the execution
of an activity or an event occurrence. Data objects can be stored in a data store
like a database or file cabinet such that they can be persisted beyond the process
instance where they are created. Furthermore, we saw how pools and lanes can be
used to model both human and non-human resources that perform process activi-
ties. Pools generally model resource classes while lanes are used to partition pools.
The interaction between pools is captured by message flows. Message flows can be
directly attached to the boundary of a pool, should the details of the interaction not
be relevant.

Activities, events, gateways, artifacts, and resources belong to the main model-
ing perspectives of a business process. The functional perspective captures the ac-
tivities that are performed in a business process while the control-flow perspective
combines these activities and related events in a given order. The data perspective
covers the artifacts manipulated in the process while the resource perspective covers
the resources that perform the various activities. In the next chapter, we will learn
how to model complex business processes by delving into the various extensions of
the core BPMN elements that we presented here.

3.6 Solutions to Exercises

Solution 3.1

In either case, the process completes with the loan provider notifying 
the applicant of the application status.

Gateways Data

Attaching a data object with an Undirected 
Association to a sequence flow indicates hand‐over 

of information between the activities involved.

A Directed Association indicates information flow. 

A data object can be read at the start of an 

activity or written upon completion.

A Bidirected Association indicates that the data 

object is modified, i.e. read and written during the 

execution of an actvity.

A Data Object represents information flowing 

through the process, such as business documents, 

e‐mails or letters. 

Events Transactions

Swimlanes

activity

Start Event: Catching an event 

starts a new process instance.

Intermediate Event (catching): 
The process can only continue 

once an event has been caught.

Attached Intermediate Event: The 

activity is aborted once an event is 

caught.

Intermediate Event (throwing): 
An event is thrown and the process 

continues.

End Event: An event is thrown 

when the end of the process is 

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically 

showing where the process 

starts or ends.

Receiving and sending 

messages.

Cyclic timer events, points in 

time, time spans or timeouts.

Catching or throwing named 

errors.

Reacting to cancelled 

transactions or triggering 

cancellation.

Compensation handling or 

triggering compensation.

Reacting to changed business 

conditions or integrating 

business rules.

Signalling across different 

processes. One signal thrown 

can be caught multiple times.

Catching or throwing one out of 

a set of events.

Off‐page connectors. Two 

corresponding link events equal 

a sequence flow.

Triggering the immediate 

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing 

branches based on conditions. When merging, it awaits one incoming branch 

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching 

conditions. When merging, it awaits all active incoming branches to 

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal 

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated 

simultaneously. When merging parallel branches it waits for all incoming 

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate 

Activity

Transaction

A Transaction is a set of activities that logically 

belong together; it might follow a specified 

transaction protocol.

Attached Intermediate Cancel Events indicate 

reactions to the cancellation of a transaction. 

Activities inside the transaction are compensated 

upon cancellation.

Completed activities can be compensated. An 

activity and the corresponding Compensate Activity 

are related using an attached Intermediate 
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes 

information flow across 

organizational boundaries.

Message flow can be attached to 

pools, activities, or message events.

The order of message exchanges 

can be specified by combining 

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent 

responsibilities for activities in a 

process. A pool or a lane can be an 

organization, a role, or a system.

Lanes sub‐divide pools or other 

lanes hierarchically.

Pool
Collapsed Pools hide all internals 

of the contained processes.

Task

Task

~

Collapsed 

Subprocess

Intermediate 

Message Event

Task

Task

Task

Task

Loop 

Activity

Multiple 

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data 

Object 

[state1]

Data 

Object 

[state2]

Conditional

Start Event

Parallel 

Gateway

Parallel 

Gateway

Grouping

End Event

Terminate 

End Event

Data‐based 

Exclusive  

Gateway

Embedded 

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data 

Object

Intermediate 

Timer Event

Sequence 

Flow

Intermediate 

Error Event

Exception 

Flow

Event‐based 

Exclusive  

Gateway Intermediate 

Message Event

Intermediate 

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is 

routed to the subsequent event/task which happens first.

Condition

Default 

Flow

Multiple 

Instances

Loop

Multiple Instances of the 

same activity are started in 

parallel or sequentially, e.g. 

for each line item in an 

order.

Loop Activity is iterated if a 

loop condition is true. The 

condition is either tested 

before or after the activity 

execution.

Ad‐hoc Subprocesses 
contain tasks only. Each task 

can be executed arbitrarily 

often until a completion 

condition is fulfilled.

Collapsed 

Subprocess

Task
A Task is a unit of 

work, the job to be 

performed.

A Subprocess is a 

decomposable activity. 

It can be collapsed to 

hide the details.

An Expanded Subprocess contains a 

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the 

execution order of activities.

Conditional Flow has a 

condition assigned that 

defines whether or not the 

flow is used.

Default Flow is the default 

branch to be chosen if all 

other conditions evaluate to 

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be 

defined as a Group to show that 

they logically belong together.

Any object can be associated with a 

Text Annotation to provide 

additional documentation.

Example: loan application



189

Once a loan application is received by the loan provider, and before 
proceeding with its assessment, the application itself needs to be 
checked for completeness.  

If the application is incomplete, it is returned to the applicant, so that 
they can fill out the missing information and send it back to the loan 
provider.  

This process is repeated until the application is complete.

Exercise: loan application 1



190

A loan application is approved if it passes two checks:  
(i) the applicant’s loan risk assessment, which is done automatically 
by a system, and  
(ii) the appraisal of the property for which the loan has been asked, 
carried out by a property appraiser. 
  
The risk assessment requires a credit history check on the applicant, 
which is performed by a financial officer.  

Once both the loan risk assessment and the property appraisal have 
been performed, a loan officer can assess the applicant’s eligibility.  

If the applicant is not eligible, the application is rejected,  
otherwise the acceptance pack is prepared and sent to the applicant.

Exercise: loan application 2



191

A loan application may be coupled with a home insurance which is 
offered at discounted prices.  
The applicant may express their interest in a home insurance plan at 
the time of submitting their loan application to the loan provider.  

Based on this information, if the loan application is approved, the loan 
provider may either only send an acceptance pack to the applicant, 
or also send a home insurance quote.  

The process then continues with the verification of the repayment 
agreement.

Exercise: loan application 3



192

Put together the four fragments of the loan assessment process that 
you created in previous Exercises. 

Then extend the resulting model by adding all the required artifacts.  

Moreover, attach annotations to specify the business rules behind:  
(i) checking an application completeness,  
(ii) assessing an application eligibility, and  
(iii) verifying a repayment agreement.

Exercise: loan application 4



193

Extend the business process for assessing loan applications that you 
created in previous exercises by considering the following resource 
aspects. 

The process for assessing loan applications is executed by four roles 
within the loan provider:  
a financial officer takes care of checking the applicant’s credit history;  
a property appraiser is responsible for appraising the property;  
an insurance sales representative sends the home insurance quote 
to the applicant if this is required.  
All other activities are performed by the loan officer who is the main 
point of contact with the applicant. 

Exercise: loan application 5



194

Extend the loan application model by representing the 
interactions between the loan provider and the applicant.

Exercises: loan application 6


