
Course on mathematical modelling:
AMPL and CPLEX

teacher: Giacomo Lanza

Dipartimento di Informatica, Università di Pisa

a.a. 2019-2020

Course on mathematical modellingG. Lanza 1

SCLP: a security example

Course on mathematical modellingG. Lanza 2

A security officer has to install a new security
system on the ground floor of a museum. He has to
install a set of cameras so as to control a set of 11
strategic points of the floor. Security cameras may
be installed at each of these points (in the map
indexed from 1 to 11). Each camera can cover the
entire visual plane (from the front to the back). For
instance, if a camera is installed at point 5, it
controls points 4, 5, 6 and 9. Considering that the
costs of installing cameras are [5, 5, 4, 4, 4, 4, 4, 6, 6,
3, 3, 5], define the problem of installing a suitable
number of cameras, to control all the strategic
points of the ground floor of the museum at
minimum cost, as an ILP model

SCLP: a security example

Course on mathematical modellingG. Lanza 3

SCLP: a security example

Course on mathematical modellingG. Lanza 4

SCLP: a security example

Course on mathematical modellingG. Lanza 5

SCLP: a security example

Course on mathematical modelling

model
param TotPoints ;
param TotCameras;
set Points := 1.. TotPoints ;
set Cameras:= 1..TotCameras;
param Coverage {Points , Cameras};
param InstallingCost {Cameras};

var InstalCam{Cameras} binary;

minimize Total_InstallingCost: sum {j in Cameras}
InstallingCost[j]* InstalCam[j];

subject to CoveringConstr{i in Points }:
sum {j in Cameras} Coverage[i,j] * InstalCam[j] >= 1;

param TotCameras = 11;
param TotPoints = 11;
param InstallingCost:=
1 5
2 5
3 4
4 4
5 4
6 4
7 4
8 6
9 6
10 3
11 5;

G. Lanza 6

SCLP: a security example

Course on mathematical modelling

model
param TotPoints ;
param TotCameras;
set Points := 1.. TotPoints ;
set Cameras:= 1..TotCameras;
param Coverage {Points , Cameras};
param InstallingCost {Cameras};

var InstalCam{Cameras} binary;

minimize Total_InstallingCost: sum {j in Cameras}
InstallingCost[j]* InstalCam[j];

subject to CoveringConstr{i in Points }:
sum {j in Cameras} Coverage[i,j] * InstalCam[j] >= 1;

param Coverage:
1 2 3 4 5 6 7 8 9 10 11:=

1 1 1 1 1 0 0 0 1 0 0 0
2 1 1 1 0 0 0 1 0 0 1 0
3 1 1 1 0 0 0 0 0 0 0 1
4 1 0 0 1 1 0 0 1 0 0 0
5 0 0 0 1 1 1 0 0 1 0 0
6 0 0 0 0 1 1 1 0 1 0 0
7 0 1 0 0 0 1 1 0 0 1 0
8 1 0 0 1 0 0 0 1 1 1 1
9 0 0 0 0 1 1 0 1 1 1 1
10 0 1 0 0 0 0 1 1 1 1 1
11 0 0 1 0 0 0 0 1 1 1 1
;

G. Lanza 7

SCLP: a security example

Course on mathematical modelling

Console
ampl: reset;
ampl: model Museum.mod;
ampl: data Museum.dat;
ampl: option solver cplex amp;
ampl: solve;
CPLEX 12.6.1.0: optimal integer solution;
objective 11
15 MIP simplex iterations
0 branch-and-bound nodes

G. Lanza 8

Console
ampl: display InstalCam;
InstalCam [*] :=
1 0
2 0
3 1
4 0
5 1
6 0
7 0
8 0
9 0

10 1
11 0;

SCLP: a security example

Course on mathematical modellingG. Lanza 9

Console
ampl: display InstalCam;
InstalCam [*] :=
1 0
2 0
3 1
4 0
5 1
6 0
7 0
8 0
9 0

10 1
11 0;

An example of Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 10

Bavarian Motor Company (BMC) manufactures luxury cars in Germany and
exports them in the U.S.; they are currently holding 200 cars available at the port
in Newark and 300 cars available at the port in Jacksonville. From there, the cars
are transported (by rail or truck) to five distributors having a specific
requirement of cars (see Figure). In the network, Newark and Jacksonville are
supply nodes (or origins): negative numbers (e.g. -200) represent their supply;
Boston, Columbus, Atlanta, Richmond and Mobile are demand nodes (or
destinations): positive numbers (e.g. +100) represent their demand.

The problem is to determine how to transport (flowing) cars along the arcs of the
network to satisfy the demands at a minimum cost.

Course on mathematical modellingG. Lanza 11

An example of Minimum Cost Flow Problem

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 12

Considering the same problem as before, take into account the following
additional constraints:
• Each link has a capacity, that cannot be exceeded (see the figure);
• Two additional links are available (Jacksonville-Boston and Newark-Atlanta),

but BMC has to but BMC has to pay a (fixed) activation cost to use them (see
the figure);

• By considering the demand of Boston fixed to 100 suppose that the number
of cars allowed to pass through the city is limited to 30;

• Columbus is allowed to increase its original demand (i. e. 60), but it has to pay
500 to BMC for any additional car that it will receive (with respect to the
original demand).

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 13

Link Capacity

Jacksonville, Richmond 90

Jacksonville, Atlanta 180

Jacksonville, Mobile 50

Newark, Boston 50

Newark, Richmond 90

Atlanta Columbus 50

All other links 100

Link Activation Cost

Jacksonville, Boston 300

Newark, Atlanta 800

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 14

• Each link has a capacity, that cannot be exceeded

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 15

• Each link has a capacity, that cannot be exceeded

model
[…]

param Cap {Link};

[…]

subject to Capacity {(i,j) in Link}: Ship[i,j] <= Cap[i,j];

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 16

• Two additional links are available (Jacksonville-Boston and Newark-Atlanta),
but BMC has to pay a (fixed) activation cost to use them

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 17

model
[…]

set AdditionalLink within (Link);

param CostAct {AdditionalLink};

var additionalservice {AdditionalLink} binary;

[…]

minimize Total_Cost: sum {(i,j) in Link} Cost[i,j] * Ship[i,j] + sum {(i,j) in AdditionalLink} CostAct[i,j] *additionalservice[i,j]

subject to LinkingActivation {(i,j) in AdditionalLink}: Ship[i,j] <= Cap[i,j]*additionalservice[i,j];

• Two additional links are available (Jacksonville-Boston and Newark-Atlanta),
but BMC has to pay a (fixed) activation cost to use them

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 18

• By considering the demand of Boston fixed to 100 suppose that the number
of cars allowed to pass through the city is limited to 30

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 19

• By considering the demand of Boston fixed to 100 suppose that the number
of cars allowed to pass through the city is limited to 30

model
[…]

set Transfer within (Cities);

[…]

subject to TransferConstr {i in Transfer}: sum {(j,i) in Link} Ship[j,i] <= DemSup[i] + 30;

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 20

• Columbus is allowed to increase its original demand (i. e. 60), but it has to
pay 500 to BMC for any additional car that it will receive (with respect to the
original demand)

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 21

model
[…]

set AddDemand within (Cities);

var additionaldemand {AddDemand} >= 0;

[…]

subject to AdditionalDemand {i in AddDemand}:
sum {(j,i) in Link} Ship[j,i] - sum {(i,k) in Link} Ship[i,k] == DemSup[i] + additionaldemand[i];

• Columbus is allowed to increase its original demand (i. e. 60), but it has to
pay 500 to BMC for any additional car that it will receive (with respect to the
original demand)

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 22

model (I/II)
set Cities;
set Origins within (Cities);
set Destinations within (Cities);
set Transfer within (Cities);
set AddDemand within (Cities);
set Link within (Cities cross Cities);
set AdditionalLink within (Link);
param Cost {Link};
param CostAct {AdditionalLink};
param Cap {Link};
param DemSup {Cities};

var Ship {Link} >= 0;
var additionalservice {AdditionalLink} binary;
var additionaldemand {AddDemand} >= 0;

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 23

model (II/II)
minimize Total_Cost:
sum {(i,j) in Link} Cost[i,j] * Ship[i,j] + sum {(i,j) in AdditionalLink} CostAct[i,j] * additionalservice[i,j]
- sum {i in AddDemand} 500*(additionaldemand[i]);

subject to Supply {i in Origins}: - sum {(i,k) in Link} Ship[i,k] >= DemSup[i];

subject to Demand {i in Destinations}: sum {(j,i) in Link} Ship[j,i] - sum {(i,k) in Link} Ship[i,k] == DemSup[i];

subject to AdditionalDemand {i in AddDemand}:
sum {(j,i) in Link} Ship[j,i] - sum {(i,k) in Link} Ship[i,k] == DemSup[i] + additionaldemand[i];

subject to Capacity {(i,j) in Link}: Ship[i,j] <= Cap[i,j];

subject to TransferConstr {i in Transfer}: sum {(j,i) in Link} Ship[j,i] <= DemSup[i] + 30;

subject to LinkingActivation {(i,j) in AdditionalLink}: Ship[i,j] <= Cap[i,j]*additionalservice[i,j];

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 24

data (I/III)
data;

set Cities := Newark Jacksonville Boston Columbus Atlanta Richmond Mobile;
set Origins := Newark Jacksonville;
set Destinations := Boston Atlanta Richmond Mobile;
set Transfer := Boston;
set AddDemand := Columbus;

param: DemSup:=
Newark -200
Jacksonville -300
Boston 100
Columbus 60
Atlanta 170
Richmond 80
Mobile 70;

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 25

data (II/III)
set Link := (Jacksonville, Richmond)

(Jacksonville, Atlanta)
(Jacksonville, Mobile)
(Jacksonville, Boston)
(Newark, Richmond)
(Newark, Boston)
(Newark, Atlanta)
(Mobile, Atlanta)
(Atlanta, Mobile)
(Atlanta, Columbus)
(Atlanta, Richmond)
(Columbus, Atlanta)
(Boston, Columbus);

set AdditionalLink := (Jacksonville, Boston)
(Newark, Atlanta);

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 26

model (III/III)
param CostAct :=
Jacksonville, Boston 300
Newark, Atlanta 800;

param: Cost, Cap:=
Jacksonville, Richmond 50 90
Jacksonville, Atlanta 45 180
Jacksonville, Mobile 50 50
Jacksonville, Boston 50 100
Newark, Richmond 40 90
Newark, Boston 30 50
Newark, Atlanta 40 100
Mobile, Atlanta 25 100
Atlanta, Mobile 35 100
Atlanta, Columbus 40 50
Atlanta, Richmond 30 100
Columbus, Atlanta 35 100
Boston, Columbus 50 100;

A constrained Minimum Cost Flow Problem

Course on mathematical modellingG. Lanza 27

run
reset;
model SND.mod;
data SND.dat;
option solver cplexamp;
solve;
display Ship;
display additionaldemand;
display additionalservice;

solution (II/II)

Ship :=
Atlanta Columbus 50
Atlanta Mobile 20
Atlanta Richmond 0
Boston Columbus 30
Columbus Atlanta 0
Jacksonville Atlanta 170
Jacksonville Boston 80
Jacksonville Mobile 50
Jacksonville Richmond 0
Mobile Atlanta 0
Newark Atlanta 70
Newark Boston 50
Newark Richmond 80;

additionaldemand [*] :=
Columbus 20;

solution (I/II)

ampl: include SND.run;
CPLEX 12.6.1.0: optimal integer solution; objective 16950
8 MIP simplex iterations
0 branch-and-bound nodes
additionalservice :=
Jacksonville Boston 1
Newark Atlanta 1;

An example of Multicommodity flows

G. Lanza Course on mathematical modelling 28

Bavarian Motor Company (BMC) manufactures also City cars, and exports them in the
U.S., in addition to the Luxury cars - as previously specified. They are 100 City cars
available at the port in Newark and 50 City cars available at the port in Jacksonville. From
there both Luxury cars and City cars are transported (by rail or truck) to the five
distributors having a specific requirement of each type of car (in the next table the
additional request of City cars is specified, whereas requirements of Luxury cars are the
same as previously defined).

An example of Multicommodity flows

G. Lanza Course on mathematical modelling 29

The problem is to determine how to transport both types of
cars along the arcs of the network to satisfy the demands at
a minimum cost, considering that for marketing reasons:
• City cars cannot use the link between Jacksonville and

Atlanta;
• The number of City cars traveling from Atlanta to

Columbus has to be at least 30% higher than the number
of cars traveling from Boston to Columbus.

City City cars

Boston 25

Columbus 35

Atlanta 40

Richmond 50

Mobile 0

Jacksonville -50

Newark -100

AMPL Main Commands:

• reset; # reset the environment

• model modelfilename.mod; # model upload

• data datafilename.dat; # data upload

• option solver nameofsolver; # optimizer selection

• solve; # solve

• display nameofvariables; # display variables

Course on mathematical modellingG. Lanza 30

