
Tecniche di Progettazione:

Design Patterns

GoF: Prototype

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Prototype Pattern

� A creational pattern

� Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this
prototype

Problem

Prototype solution

Structure & Participants

Prototype(Graphic)
-declares an interface
for cloning itself.

ConcretePrototype
(Staff,WholeNote,
HalfNote)
-implements an
operation for cloning
itself.

Client(GraphicalTo
ol)
- creates a new
object by asking a
prototype to clone
itself.

java.lang Class Object

protected Object clone() throws

CloneNotSupportedException

Creates and returns a copy of this object. The precise meaning of "copy" may
depend on the class of the object. The general intent is that, for any object
x, the expression:

x.clone() != x

will be true, and that the expression:

x.clone().getClass() == x.getClass()

will be true, but these are not absolute requirements. While it is typically the
case that:

x.clone().equals(x)

will be true, this is not an absolute requirement.

By convention, the returned object should be obtained by calling super.clone.
If a class and all of its superclasses (except Object) obey this convention, it
will be the case that x.clone().getClass() == x.getClass().

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

java.lang Class Object

protected Object clone() throws

CloneNotSupportedException

� By convention, the object returned by this method should be
independent of this object (which is being cloned).

� To achieve this independence, it may be necessary to modify
one or more fields of the object returned by super.clone
before returning it.

� Typically, this means copying any mutable objects that comprise the
internal "deep structure" of the object being cloned and replacing the
references to these objects with references to the copies.

� If a class contains only primitive fields or references to immutable
objects, then it is usually the case that no fields in the object
returned by super.clone need to be modified.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.7

Ex. Cookies

Prototype Pattern Example code

public class Cookie implements Cloneable {

public Object clone(){

try{ Cookie copy = (Cookie)super.clone();

return copy; }

catch(CloneNotSupportedException e){

e.printStackTrace();

return null; }

}

public void display(){

System.out.println("I'm a cookie"); }

}

Prototype Pattern Example code

public class CoconutCookie extends Cookie{

public void display(){

System.out.println("I'm a coconout cookie");

}

}

Prototype Pattern Example code

public class CookieMachine {

private Cookie cookie;

public CookieMachine(Cookie cookie) {

this.cookie = cookie; }

public Cookie makeCookie() {

return (Cookie)cookie.clone(); }

// public Object clone() { }

public static void main(String args[]){

Cookie tempCookie = null;

Cookie prot = new
CoconutCookie();

CookieMachine cm = new
CookieMachine(prot);

for(int i=0; i<10; i++)

{

tempCookie = cm.makeCookie();

tempCookie.display();

}

prot = new Cookie();

cm = new CookieMachine(prot);

for(int i=0; i<10; i++)

{

tempCookie = cm.makeCookie();

tempCookie.display();

}

}

}

Output

I'm a coconout cookie

I'm a coconout cookie

I'm a coconout cookie

I'm a coconout cookie

I'm a coconout cookie

I'm a coconout cookie

I'm a coconout cookie

I'm a coconout cookie

I'm a coconout cookie

I'm a coconout cookie

I'm a cookie

I'm a cookie

I'm a cookie

I'm a cookie

I'm a cookie

I'm a cookie

I'm a cookie

I'm a cookie

I'm a cookie

I'm a cookie

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

Prototype Pattern

� When to Use

� When product creation should be decoupled from system
behavior

� When to avoid subclasses of an object creator in the client
application

� When creating an instance of a class is time-consuming or
complex in some way.

Consequences of Prototype Pattern

� Hides the concrete product classes from the client

� Adding/removing of prototypes at run-time

� Allows specifying new objects by varying values or
structure

� Reducing the need for sub-classing

Drawbacks of Prototype Pattern

� It is built on the method .clone(), which could be
complicated sometimes in terms of shallow copy and
deep copy. Moreover, classes that have circular references
to other classes cannot really be cloned.

No homework on this pattern

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

