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GRASP: MORE PATTERNS FOR 

ASSIGNING RESPONSIBILITIES 

Luck is the residue of design. 

— Branch Rickey 

Objectives 

•     Learn to apply the remaining GRASP patterns. 

Introduction 

Previously, we explored the application of the first five GRASP patterns: 

• Information Expert, Creator, High Cohesion, Low Coupling, and Controller 

The final four GRASP patterns are: 

• Polymorphism 

• Indirection 

• Pure Fabrication 

• Protected Variations 

Once these have been explained, we will have a rich and shared vocabulary with 
which to discuss designs. And as some of the "gang-of-four" (GoF) design pat-
terns (such as Strategy and Factory) are also introduced (in subsequent chapters), 
that vocabulary will grow. A short sentence such as, "I suggest a Strategy 
generated from a Factory to support Protected Variations and low coupling with 
respect to <X>" communicates lots of information about the design, since pattern 
names tersely convey a complex design concept. 
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This chapter introduces the remaining GRASP patterns, a learning aid of funda-
mental principles by which responsibilities are assigned to objects and objects 
are designed. 

Subsequent chapters introduce other useful patterns and apply them to the 
development of the second iteration of the NextGen POS application. 

1     Polymorphism 

Solution When related alternatives or behaviors vary by type (class), assign responsibility 
for the behavior—using polymorphic operations—to the types for which the 
behavior varies.1 

Corollary: Do not test for the type of an object and use conditional logic to per-
form varying alternatives based on type. 

Problem How to handle alternatives based on type? How to create pluggable software 
components? 

Alternatives based on type—Conditional variation is a fundamental theme in 
programs. If a program is designed using if-then-else or case statement condi-
tional logic, then if a new variation arises, it requires modification of the case 
logic. This approach makes it difficult to easily extend a program with new vari-
ations because changes tend to be required in several places—wherever the con-
ditional logic exists, 

Pluggable software components—Viewing components in client-server relation-
ships, how can you replace one server component with another, without affecting 
the client? 

Example In the NextGen POS application, there are multiple external third-party tax cal-
culators that must be supported (such as Tax-Master and Good-As-Gold 
Tax-Pro); the system needs to be able to integrate with different ones. Each tax 
calculator has a different interface, and so there is similar but varying behavior 
to adapt to each of these external fixed interfaces or APIs. One product may sup-
port a raw TCP socket protocol, another may offer a SOAP interface, and a third 
may offer a Java RMI interface. 

What objects should be responsible for handling these varying external tax cal-
culator interfaces? 

1. Polymorphism has several related meanings. In this context, it means "giving the 
same name to services in different objects" [Coad95] when the services are similar or 
related. The different object types usually implement a common interface or are related 
in an implementation hierarchy with a common superclass, but this is lan-
guage-dependent; for example, dynamic binding languages such as Smalltalk do not 
require this. 
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POLYMORPHISM 

Since the behavior of calculator adaptation varies by the type of calculator, by 
Polymorphism we should assign the responsibility for adaptation to different 
calculator (or calculator adapter) objects themselves, implemented with a poly-
morphic getTaxes operation (see Figure 22.1). 

These calculator adapter objects are not the external calculators, but rather, 
local software objects that represent the external calculators, or the adapter for 
the calculator. By sending a message to the local object, a call will ultimately be 
made on the external calculator in its native API. 

Each getTaxes method takes the Sale object as a parameter, so that the calculator 
can analyze the sale. The implementation of each getTaxes method will be 
different: TaxMasterAdapter will adapt the request to the API of Tax-Master, 
and so on. 

TaxMasterAdapter

getTaxes( Sale ) : List of TaxLineItems

GoodAsGoldTaxPro

Adapter

getTaxes( Sale ) : List of TaxLineItems

«interface»

ITaxCalculatorAdapter

getTaxes( Sale ) : List of TaxLineItems

By Polymorphism, multiple tax calculator adapters have

their own similar, but varying behavior for adapting to

different external tax calculators.

<???>Adapter

...

...

 

Figure 22.1 Polymorphism in adapting to different external tax calculators. 

UML notation—Figure 22.1 introduces some new UML notation for specifying 
interfaces (a descriptor of operations without implementation), interface 
implementation, and for "collection" return types; Figure 22.2 elaborates. A 
UML stereotype is used to indicate an interface; a stereotype is a mechanism to 
categorize an element in some way. A stereotype name is surrounded by 
guillemets symbols, as in «interface». Guillemets are special single-character 
brackets most widely known by their use in French typography to indicate a 
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quote; but to quote Rumbaugh, "the typographically challenged could substitute 
two angle brackets (« ») if necessary" [RJB99]. 

GoodAsGoldTaxPro

Adapter

getTaxes( Sale ) : List of TaxLineItems

«interface»
ITaxCalculatorAdapter

getTaxes( Sale ) : List of TaxLineItems

INTERFACE NOTATION

INTERFACE NOTATION

Interface implementation is

illustrated with a dashed line

and a large unfilled arrow
pointing to the interface from

the implementing class.

the «interface» element in guillemets is

called a UML stereotype

Return or parameter types
that represent a collection

can be specified in any

syntax, but this is the

generally accepted common

UML style.

 

Figure 22.2 UML notation for interfaces and return types. 

Polymorphism is a fundamental principle in designing how a system is orga-
nized to handle similar variations. A design based on assigning responsibilities 
by Polymorphism can be easily extended to handle new variations. For example, 
adding a new calculator adapter class with its own polymorphic getTaxet 
method will have minor impact on the existing design. 

Sometimes, developers design systems with interfaces and polymorphism for 
speculative "future-proofing" against an unknown possible variation. If the vari-
ation point is definitely motivated by an immediate or very probable variability 
then the effort of adding the flexibility through polymorphism is of course 
rational. But critical evaluation is required, because it is not uncommon to see 
unnecessary effort being applied to future-proofing a design with polymorphism 
at variation points that in fact are improbable and will never actually arise. Be 
realistic about the true likelihood of variability before investing in increased 
flexibility. 

• Extensions required for new variations are easy to add. 

• New implementations can be introduced without affecting clients. 



PURE FABRICATION 

• Protected Variations 

• A number of popular GoF design patterns [GHJV95], which will be dis 
cussed in this book rely on polymorphism, including Adapter, Command, 
Composite, Proxy, State, and Strategy. 

Choosing Message, Don't Ask "What Kind?" 

Fabrication 

Assign a highly cohesive set of responsibilities to an artificial or convenience 
class that does not represent a problem domain concept—something made up, to 
support high cohesion, low coupling, and reuse. 

Such a class is a fabrication of the imagination. Ideally, the responsibilities 
assigned to this fabrication support high cohesion and low coupling, so that the 
design of the fabrication is very clean, or pure—hence a pure fabrication.  

Finally, a pure fabrication implies making something up, which we do when 
we're desperate! 

What object should have the responsibility, when you do not want to violate 
High Cohesion and Low Coupling, or other goals, but solutions offered by Expert 
(for example) are not appropriate? 

Object-oriented designs are sometimes characterized by implementing as soft-
ware classes representations of concepts in the real-world problem domain to 
lower the representational gap; for example a Sale and Customer class. However, 
there are many situations in which assigning responsibilities only to domain 
layer software classes leads to problems in terms of poor cohesion or coupling, or 
low reuse potential. 

For example, suppose that support is needed to save Sale instances in a relational 
database. By Information Expert, there is some justification to assign this 
responsibility to the Sale class itself, because the sale has the data that needs to be 
saved. But consider the following implications: 

• The task requires a relatively large number of supporting database-oriented 
operations,  none related to the concept of sale-ness,  so the Sale  class 
becomes incohesive. 

• The Sale class has to be coupled to the relational database interface (such as 
JDBC in Java technologies), so its coupling goes up. And the coupling is not 
even to another domain object, but to a particular kind of database 
interface. 
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• Saving objects in a relational database is a very general task for which 
many classes need support. Placing these responsibilities in the Sale class 
suggests there is going to be poor reuse or lots of duplication in other classes 
that do the same thing. 

Thus, even though Sale is a logical candidate by virtue of Information Expert to 
save itself in a database, it leads to a design with low cohesion, high coupling, 
and low reuse potential—exactly the kind of desperate situation that calls for 
making something up. 

A reasonable solution is to create a new class that is solely responsible for saving 
objects in some kind of persistent storage medium, such as a relational database; 
call it the PersistentStorage.

2
' This class is a Pure Fabrication—a figment of the 

imagination. 

 

 

 

Notice the name: PersistentStorage. This is an understandable concept, yet the 
name or concept "persistent storage" is not something one would find in the 
Domain Model. And if a designer asked a business-person in a store, "Do you 
work with persistent storage objects?" they would not understand. They under-
stand concepts such as "sale" and "payment." PersistentStorage is not a domain 
concept, but something made up or fabricated for the convenience of the software 
developer. 

This Pure Fabrication solves the following design problems: 

• The Sale remains well-designed, with high cohesion and low coupling. 

• The PersistentStorage class is itself relatively cohesive, having the sole pur 
pose of storing or inserting objects in a persistent storage medium. 

• The PersistentStorage class is a very generic and reusable object. 

Creating a pure fabrication in this example is exactly the situation in which 
their use is called for—eliminating a bad design based on Expert, with poor 
cohesion and coupling, with a good design in which there is greater potential for 
reuse. 

Note that, as with all the GRASP patterns, the emphasis is on where responsi-
bilities should be placed. In this example the responsibilities are shifted from 
the Sale class (motivated by Expert) to a Pure Fabrication. 

2. In a real persistence framework, more than a single pure fabrication class is ultimately 
necessary to create a reasonable design. This object will be a front-end facade on to a 
large number of back-end helper objects. 

PersistentStorage

insert( Object )

update( Object )
...

By Pure Fabrication

 



PURE FABRICATION 

The design of objects can be broadly divided into two groups: 

1. Those chosen by representational decomposition. 

2. Those chosen by behavioral decomposition. 

For example, the creation of a software class such as Sale is by representational 
decomposition; the software class is related to or represents a thing in a domain. 
Representational decomposition is a common strategy in object design and sup-
ports the goal of reduced representational gap. But sometimes, we desire to 
assign responsibilities by grouping behaviors or by algorithm, without any con-
cern for creating a class with a name or purpose that is related to a real-world 
domain concept. 

A good example is an "algorithm" object such as a TableOfContentsGenerator, 
whose purpose is (surprise) to generate a table of contents and was created as a 
helper or convenience class by a developer, without any concern for choosing a 
name from the domain vocabulary of books and documents. It exists as a conve-
nience class conceived by the developer to group together some related behavior or 
methods, and is thus motivated by behavioral decomposition. 

To contrast, a software class named TableOfContents is inspired by representa-
tional decomposition, and should contain information consistent with our con-
cept of the real domain (such as chapter names). 

Identifying a class as a Pure Fabrication is not critical. It is an educational concept 
to communicate the general idea that some software classes are inspired by 
representations of the domain, and some are simply "made up" as a convenience 
for the object designer. These convenience classes are usually designed to group 
together some common behavior, and are thus inspired by behavioral rather 
than representational decomposition. 

Said another way, a Pure Fabrication is usually partitioned based on related 
functionality, and so is a kind of function-centric or behavioral object. 

Many existing object-oriented design patterns are examples of Pure Fabrications: 
Adapter, Strategy, Command, and so on [GHJV95]. 

As a final comment worth reiterating: Sometimes a solution offered by Informa-
tion Expert is not desirable. Even though the object is a candidate for the 
responsibility by virtue of having much of the information related to the respon-
sibility, in other ways, its choice leads to a poor design, usually due to problems in 
cohesion or coupling. 

• High Cohesion is supported because responsibilities are factored into a fine 
grained class that only focuses on a very specific set of related tasks. 

• Reuse potential may increase because of the presence of fine-grained Pure 
Fabrication classes whose responsibilities have applicability in other 
applications. 

Behavioral decomposition into Pure Fabrication objects is sometimes overused 
by those new to object design and more familiar with decomposing or organizing 
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software in terms of functions. To exaggerate, functions just become objects. 
There is nothing inherently wrong with creating "function" or "algorithm" 
objects, but it needs to be balanced with the ability to design with representa-
tional decomposition, such as the ability to apply Information Expert so that a 
representational class such as Sale also has responsibilities. Information Expert 
supports the goal of co-locating responsibilities with the objects that know the 
information needed for those responsibilities, which tends to support lower 
coupling. If overused, Pure Fabrication could lead to too many behavior objects 
that have responsibilities not co-located with the information required for their 
fulfillment, which can adversely affect coupling. The usual symptom is that 
most of the data inside the objects is being passed to other objects to reason with it. 

Related Patterns   •     Low Coupling. 

and Principles TT. ,   „ ,     . 

• High Cohesion. 

• A Pure Fabrication usually takes on responsibilities from the domain class 
that would be assigned those responsibilities based on the Expert pattern. 

• All GoF design patterns [GHJV95], such as Adapter, Command, Strategy, 
and so on, are Pure Fabrications. 

• Virtually all other design patterns are Pure Fabrications. 

22.3     Indirection 

Solution Assign the responsibility to an intermediate object to mediate between other 
components or services so that they are not directly coupled. 

The intermediary creates an indirection between the other components. 

Problem Where to assign a responsibility, to avoid direct coupling between two (or more) 
things? How to de-couple objects so that low coupling is supported and reuse 
potential remains higher? 

Examples  TaxCalculatorAdapter 

These objects act as intermediaries to the external tax calculators. Via polymor-
phism, they provide a consistent interface to the inner objects and hide the vari-
ations in the external APIs. By adding a level of indirection and adding 
polymorphism, the adapter objects protect the inner design against variations in 
the external interfaces (see Figure 22.3). 
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s : Sale :TaxMasterAdapter

taxes := getTaxes( s )

t := getTotal()

the adapter acts as a level

of indirection to external

systems

«system»

: TaxMaste

TCP socket

communication

xxx
...

 
Figure 22.3 Indirection via the adapter. 

PersistentStorage 

The Pure Fabrication example of decoupling the Sale from the relational data-
base services through the introduction of a PersistentStorage class is also an 
example of assigning responsibilities to support Indirection. The PersistentStor-
age acts as a intermediary between the Sale and the database. 

"Most problems in computer science can be solved by another level of indirec-
tion" is an old adage with particular relevance to object-oriented designs. 3 

Just as many existing design patterns are specializations of Pure Fabrication, 
many are also specializations of Indirection. Adapter, Facade, and Observer are 
examples [GHJV95]. In addition, many Pure Fabrications are generated 
because of Indirection. The motivation for Indirection is usually Low Coupling; 
an intermediary is added to decouple other components or services. 

• Lower coupling between components. 

• Protected Variations 

• Low Coupling 

• Many GoF patterns, such as Adapter, Bridge, Facade, Observer, and 
Mediator [GHJV95]. 

• Many Indirection intermediaries are Pure Fabrications. 

3. If any adage is old in computer science! I have forgotten the source (Parnas?). Note 
there is also the counter-adage: "Most problems in performance can be solved by 
removing another layer of indirection!" 

333 

INDIRECTION 



22 - GRASP: MORE PATTERNS FOR ASSIGNING RESPONSIBILITIES 

1     Protected Variations 

Solution Identify points of predicted variation or instability; assign responsibilities to 
create a stable interface around them. 

Note: The term "interface" is used in the broadest sense of an access view; it 
does not literally only mean something like a Java or COM interface. 

Problem How to design objects, subsystems, and systems so that the variations or insta-
bility in these elements does not have an undesirable impact on other elements? 

Example For example, the prior external tax calculator problem and its solution with 
Polymorphism illustrate Protected Variations (Figure 22.1). The point of insta-
bility or variation is the different interfaces or APIs of external tax calculators. 
The POS system needs to be able to integrate with many existing tax calculator 
systems, and also with future third-party calculators not yet in existence. 

By adding a level of indirection, an interface, and using polymorphism with var-
ious ITaxCalculatorAdapter implementations, protection within the system 
from variations in external APIs is achieved. Internal objects collaborate with a 
stable interface; the various adapter implementations hide the variations to the 
external systems. 

Discussion Protected Variations (PV) was first published as a pattern by Cockburn in 
[VCK96], although this very fundamental design principle has been around for 
decades under various terms. 

Mechanisms Motivated by PV 

PV is a root principle motivating most of the mechanisms and patterns in pro-
gramming and design to provide flexibility and protection from variations. 

At one level, the maturation of a developer or architect can be seen in their 
growing knowledge of ever-wider mechanisms to achieve PV, to pick the appro-
priate PV battles worth fighting, and their ability to choose a suitable PV solution. 
In the early stages, one learns about data encapsulation, interfaces, and 
polymorphism—all core mechanisms to achieve PV. Later, one learns techniques 
such as rule-based languages, rule interpreters, reflective and metadata 
designs, virtual machines, and so forth—all of which can be applied to protect 
against some variation. 

For example: 

Core Protected Variations Mechanisms 

Data encapsulation, interfaces, polymorphism, indirection, and standards are 
motivated by PV. Note that components such as brokers and virtual machines 
are complex examples of indirection to achieve PV. 
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PROTECTED VARIATIONS 

Data-Driven Designs 

Data-driven designs cover a broad family of techniques include reading codes, 
values, class file paths, class names, and so forth, from an external source in 
order to change the behavior of, or "parameterize" a system in some way at run-
time. Other variants include style sheets, metadata for object-relational map-
ping, property files, reading in window layouts, and much more. The system is 
protected from the impact of data, metadata, or declarative variations by exter-
nalizing the variant, reading it in, and reasoning with it. 

Service Lookup 

Service lookup includes techniques such as using naming services (for example, 
Java's JNDI) or traders to obtain a service (for example, Java's Jini, or UDDI for 
Web services). Clients are protected from variations in the location of services, 
using the stable interface of the lookup service. It is a special case of data-driven 
design. 

Interpreter-Driven Designs 

Interpreter-driven designs include rule interpreters that execute rules read 
from an external source, script or language interpreters that read and run pro-
grams, virtual machines, neural network engines that execute nets, constraint 
logic engines that read and reason with constraint sets, and so forth. This 
approach allows changing or parameterizing the behavior of a system via exter-
nal logic expressions. The system is protected from the impact of logic variations 
by externalizing the logic, reading it in, and using an interpreter. 

Reflective or Meta-Level Designs 

An example of this approach is using the java.beansJntrospector to obtain a 
Beanlnfo object, asking for the getter Method object for bean property X, and 
calling Method, invoke. The system is protected from the impact of logic or external 
code variations by reflective algorithms that use introspection and meta-lan-guage 
services. It may be considered a special case of data-driven designs. 

Uniform Access 

Some languages, such as Ada, Eiffel, and C#, support a syntactic construct so 
that both a method and field access are expressed the same way. For example, 
adrcle.radius may invoke a radiusQ:float method or directly refer to a public 
field, depending on the definition of the class. We can change from public fields to 
access methods, without changing the client code. 

The Liskov Substitution Principle (LSP) 

LSP [LiskovSS] formalizes the principle of protection against variations in dif-
ferent implementations of an interface, or subclass extensions of a superclass. 

To quote: 
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What is wanted here is something like the following substitution 
property: If for each object ol of type S there is an object o2 of 
type T such that for all programs P defined in terms of T, the 
behavior of P is unchanged when ol is substituted for o2 then S is 
a subtype of T [LiskovSS]. 

Informally, software (methods, classes, ...) that refers to a type T (some interface 
or abstract superclass) should work properly or as expected with any substituted 
implementation or subclass of T—call it S. For example: 

public  void  addTaxes(   ITaxCalculatorAdapter  calculator.   Sale   sale   ) { 
List   taxLineltems   =  calculator.getTaxes(   sale   ); 
//   ... } 

For this method addTaxes, no matter what implementation of ITaxCalculator-
Adapter is passed in as an actual parameter, the method should continue to 
work "as expected." LSP is a simple idea, intuitive to most object developers, 
that formalizes this intuition. 

Structure-Hiding Designs 

In the first edition of this book, an important object design principle called 
Don't Talk to Strangers or the Law of Demeter [LieberherrSS] was 
expressed as one of the nine GRASP patterns. Briefly, it means to avoid creating 
designs that traverse long object structure paths and send messages (or talk) to 
distant, indirect (stranger) objects. Such designs are fragile with respect to 
changes in the object structures—a common point of instability. But in the second 
edition the more general PV replaced Don't Talk to Strangers, because the latter 
is a special case of the former. That is, a mechanism to achieve protection from 
structure changes is to apply the Don't Talk to Strangers rules. 

Don't Talk to Strangers places constraints on what objects you should send mes-
sages to within a method. It states that within a method, messages should only be 
sent to the following objects: 

1. The this object (or self). 

2. A parameter of the method. 

3. An attribute of this. 

4. An element of a collection which is an attribute of this. 

5. An object created within the method. 

The intent is to avoid coupling a client to knowledge of indirect objects and the 
object connections between objects. 

Direct objects are a client's "familiars," indirect objects are "strangers." A client 
should talk to familiars, and avoid talking to strangers. 

Here is an example that (mildly) violates Don't Talk to Strangers. The com-
ments explain the violation. 



PROTECTED VARIATIONS 

class  Register 
{ 
private Sale sale; 

public void slightlyFragileMethod() { 
// sale.getPayment() sends a message to a "familiar" (passes #3) 

// but in sale.getPayment().getTenderedAmount() 
// the getTenderedAmount() message is to a "stranger" Payment 

Money amount = sale.getPayment().getTenderedAmount(); 

// . . .
 } 

// . . .
 } 

This code traverses structural connections from a familiar object (the Sale) to a 
stranger object (the Payment), and then sends it a message. It is very slightly 
fragile, as it depends on the fact that Sale objects are connected to Payment 
objects. Realistically, this is unlikely to be a problem. 

But, consider this next fragment, which traverses farther along the structural 
path: 

public  void moreFragileMethod() { 
AccountHolder holder  = 

sale. getPayment () . get Ac count () . getAccountHolder () ; 

// ...

 } 

The example is contrived, but you see the pattern: Traversing farther along a 
path of object connections in order to send a message to a distant, indirect 
object—talking to a distant stranger. The design is coupled to a particular struc-
ture of how objects are connected. The farther along a path the program 
traverses, the more fragile it is. 

Karl Lieberherr and his colleagues have done research into good object design 
principles, under the umbrella of the Demeter project. This Law of Demeter 
(Don't Talk to Strangers) was identified because of the frequency with which 
they saw change and instability in object structure, and thus frequent breakage 
in code that was coupled to knowledge of object connections. 

Yet, as will be examined in the following "Speculative PV and Picking your Bat-
tles" section, it is not always necessary to protect against this; it depends on the 
instability of the object structure. In standard libraries (such as the Java libraries) 
the structural connections between classes of objects are relatively stable. In 
mature systems, the structure is more stable. In new systems in early iteration, it 
isn't stable. 

In general, the farther along a path one traverses, the more fragile it is, and 
thus it is more useful to conform to Don't Talk to Strangers. 
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Strictly obeying this law—protection against structural variations—requires 

adding new public operations to the "familiars" of an object; these operations 

provide the ultimately desired information, and hide how it was obtained. For 

example, to support Don't Talk to Strangers for the previous two cases: 

//  case  1 
Money amount = sale.getTenderedAmountOfPayment( ) ;  

// case 2 
AccountHolder holder = sale.getAccountHolderOfPayment( ) ;  

Caution: Speculative PV and Picking Your Battles 

First, two points of change are worth defining: 

• variation point—Variations in the existing, current system or require 

ments, such as the multiple tax calculator interfaces that must be sup 

ported. 

• evolution point—Speculative points of variation that may arise in the 

future, but which are not present in the existing requirements.
4
 

PV is applied to both variation and evolution points. 

A caution: Sometimes the cost of speculative "future-proofing" at evolution 

points outweighs the cost incurred by a simple, more "brittle" design that is 

reworked as necessary in response to the true change pressures. That is, the 

cost of engineering protection at evolution points can be higher than reworking a 

simple design. 

For example, I recall a pager message handling system where the architect 

added a scripting language and interpreter to support flexibility and protected 

variation at an evolution point. However, during rework in an incremental 

release, the complex (and inefficient) scripting was removed— it simply wasn't 

needed. And when I started OO programming (in the early 1980s) I suffered the 

disease of "generalize-itis" in which I tended to spend many hours creating 

superclasses of the classes I really needed to write. I would make everything 

very general and flexible (and protected against variations), for that future situ-

ation when it would really pay off—which never came. I was a poor judge of 

when it was worth the effort. 

The point is not to advocate rework and brittle designs. If the need for flexibility 

and protection from change is realistic, then applying PV is motivated. But if it is 

for speculative future-proofing or speculative "reuse" with very uncertain 

probabilities, then restraint and critical thinking is called for. 

4. In the UP, evolution points can be formally documented in Change Cases; each 
describes relevant aspects of an evolution point for the benefit of a future architect. 



PROTECTED VARIATIONS 

Novice developers tend toward brittle designs, intermediate developers tend 
toward overly fancy and flexible, generalized ones (in ways that never get used). 
Expert designers choose with insight; perhaps a simple and brittle design whose 
cost of change is balanced against its likelihood. 

• Extensions required for new variations are easy to add. 

• New implementations can be introduced without affecting clients. 

• Coupling is lowered. 

• The impact or cost of changes can be lowered. 

• Most design principles and patterns are mechanisms for protected variation, 
including polymorphism, interfaces, indirection, data encapsulation, most of 
the GoF design patterns, and so on. 

• In [Pree95] variation and evolution points are called "hot spots." 

PV is essentially the same as the information hiding and open-closed principles, 
which are older terms. As an "official" pattern in the pattern community, it was 
named "Protected Variations" in 1996 by Cockburn in [VCK96]. 

Information Hiding 

David Parnas's famous paper On the Criteria To Be Used in Decomposing Sys-
tems Into Modules [Parnas72] is an example of classics often cited but seldom 
read. In it, Parnas introduces the concept of information hiding. Perhaps 
because the term sounds like the idea of data encapsulation, it has been misin-
terpreted as that, and some books erroneously define the concepts as synonyms. 
Rather, Parnas intended information hiding to mean hide information about the 
design from other modules, at the points of difficultly or likely change. To quote 
his discussion of information hiding as a guiding design principle: 

We propose instead that one begins with a list of difficult design 
decisions or design decisions which are likely to change. Each 
module is then designed to hide such a decision from the others. 

That is, Parnas's information hiding is the same principle expressed in PV, and 
not simply data encapsulation—which is but one of many techniques to hide 
information about the design. However, the term has been so widely reinter-
preted as a synonym for data encapsulation that it is no longer possible to use it in 
its original sense without misunderstanding. 

Open-Closed Principle 

The Open-Closed Principle (OCP), described by Bertrand Meyer in [MeyerSS] 
is essentially equivalent to the PV pattern and to information hiding. A definition 
of OCP is: 
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Modules should be both open (for extension; adaptable) and 
closed (the module is closed to modification in ways that affect 
clients). 

OCP and PV are essentially two expressions of the same principle, with different 
emphasis: protection at variation and evolution points. In OCP, "module" 
includes all discrete software elements, including methods, classes, subsystems, 
applications, and so forth. 

In the context of OCP, the phrase "closed with respect to X" means that clients 
are not affected if X changes. For example, "the class is closed with respect to 
instance field definitions" through the mechanism of data encapsulation with 
private fields and public accessing methods. At the same time, they are open to 
modifying the definitions of the private data, because outside clients are not 
directly coupled to the private data. 

As another example, "the tax calculator adapters are closed with respect to their 
public interface" through implementing the stable ITaxCalculatorAdapter inter-
face. However, the adapters are open to extension by being privately modified in 
response to changes in the APIs of the external tax calculators, in ways that do 
not break their clients. 


