
The SPIN Model Checker

Metodi di Verifica del Software
Andrea Corradini

Lezione 1
2013

Slides liberamente adattate da “Logic Model Checking”,
per gentile concessione di Gerard J. Holzmann
http://spinroot.com/spin/Doc/course/

 2

Why focus on SPIN?

• directly targets software, rather than hardware verification
• good example of the automata theoretic approach
• better to understand one system really well, so that you can use it

effectively, rather than many different systems partially (?)
• based on well-understood theory of ω-automata and linear

temporal logic
• 2001 ACM Software Systems Award (other winning software

systems include: Unix, TCP/IP, WWW, Tcl/Tk, Java)
• distributed freely as research tool, well-documented, actively

maintained, growing user-base, users in both academia and
industry

• annual Spin user workshops series held since 1995

 3

types of correctness requirements

• some requirements are standard:
– a system (e.g., an OS) should not be able to deadlock
– no process should be able to starve another
– no explicitly stated assertion inside a process should ever fail

• the most important requirements are application
specific:
– system invariants, process assertions
– effective progress requirements
– proper termination
– general causal and temporal relations on states

• e.g., when a request is issued eventually a reply is returned
– fairness assumptions,

• e.g., about process scheduling
– etc. etc.

 4

the choice of the model depends on the
requirements that must be checked

• a good model is always an abstraction of reality
– it should have less detail than the artifact being modeled
– the level of detail is selected based on its relevance to the

correctness requirements
– the objective is to gain analytical power by reducing detail

• the purpose of a model is to explain and predict
– if it can do neither because it is either too approximate or too

detailed, it is not a good model

• a model is a design aid
– it often goes through different versions, describing different

aspects of reality, and can slowly become more accurate,
without becoming more detailed

accuracy != detail

 5

building verification models

• we want to be able to make separate statements
about system design and about system requirements

• therefore we will need two notations/formalisms
– one for specifying behavior (system design)
– one for specifying requirements (correctness properties)

• the two types of statements combined define a
verification model

• a model checker can now:
– check that the behavior specification (the design) is logically

consistent with the requirements specification (the desired
properties of the design)

– the formalism must be defined in such a way that we can
guarantee the decidability of any property we can state for
any system we can specify

 6

Spin verification models are used to define
abstractions of distributed system designs

• the specification language must support all essential aspects of
distributed systems software, and discourage the specification
of any redundant detail

• there are 3 basic types of objects in a Spin verification model:
– asynchronous processes
– global and local data objects
– message channels

process0 process1

local
data

global
data

local
data

message
channels

 7

hello world as a “Spin model”

active proctype main()

{

 printf(“hello world\n”)

}

these are keywords ‘main’ is not a keyword

no semi-colon here…

$ spin hello.pml
hello world
1 process created
$

$ spin hello.pml
hello world
1 process created
$

a simulation run:

this is a bit like C

$ spin –a hello.pml
$ gcc –o pan pan.c
$./pan
... depth reached 2, errors: 0
$

$ spin –a hello.pml
$ gcc –o pan pan.c
$./pan
... depth reached 2, errors: 0
$

a verification run:

s

0

s

1

print

stop

start

automaton

 8

a more interesting example: two processes
a card reader and a line printer

?A ?B

?B

!A

!B

?A

!B

!A

?A reserve printer device
?B reserve card reader

!A release printer device
!B release card reader

process 1 process 2

 9

the corresponding Spin model
(don’t worry about the details just yet)

$ cat generic.pml
bool printer = true; /* initially both devices */
bool reader = true; /* are available */

active [2] proctype user()
{

do
:: (printer) -> printer = false;
(reader) -> reader = false;
/* print cards */
printer = true; /* available */
reader = true

:: (reader) -> reader = false;
(printer) -> printer = false;
/* print cards */
reader = true;
printer = true

od
}
$

$ cat generic.pml
bool printer = true; /* initially both devices */
bool reader = true; /* are available */

active [2] proctype user()
{

do
:: (printer) -> printer = false;
(reader) -> reader = false;
/* print cards */
printer = true; /* available */
reader = true

:: (reader) -> reader = false;
(printer) -> printer = false;
/* print cards */
reader = true;
printer = true

od
}
$

 10

a simulation of 20 steps
$ spin -v -u20 generic.pml
 0: proc - (:root:) creates proc 1 (user)
 1: proc 0 (user) line 6 "generic.pml" (state 13)[(printer)]
 2: proc 0 (user) line 7 "generic.pml" (state 2) [printer = 0]
 3: proc 0 (user) line 8 "generic.pml" (state 3) [(reader)]
 4: proc 1 (user) line 6 "generic.pml" (state 13)[(reader)]
 5: proc 0 (user) line 8 "generic.pml" (state 4) [reader = 0]
 6: proc 1 (user) line 13 "generic.pml" (state 8) [reader = 0]
 7: proc 0 (user) line 10 "generic.pml" (state 5) [printer = 1]
 8: proc 1 (user) line 14 "generic.pml" (state 9) [(printer)]
 9: proc 1 (user) line 14 "generic.pml" (state 10)[printer = 0]
 10: proc 0 (user) line 11 "generic.pml" (state 6) [reader = 1]
 11: proc 0 (user) line 19 "generic.pml" (state 14)[.(goto)]
 12: proc 0 (user) line 6 "generic.pml" (state 13)[(reader)]
 13: proc 1 (user) line 16 "generic.pml" (state 11)[reader = 1]
 14: proc 1 (user) line 17 "generic.pml" (state 12)[printer = 1]
 15: proc 1 (user) line 19 "generic.pml" (state 14)[.(goto)]
 16: proc 1 (user) line 6 "generic.pml" (state 13)[(reader)]
 17: proc 0 (user) line 13 "generic.pml" (state 8) [reader = 0]
 18: proc 1 (user) line 13 "generic.pml" (state 8) [reader = 0]
 19: proc 0 (user) line 14 "generic.pml" (state 9) [(printer)]
 20: proc 1 (user) line 14 "generic.pml" (state 9) [(printer)]

depth-limit (-u20 steps) reached
#processes: 2
 printer = 1
 reader = 0
 20: proc 1 (user) line 14 "generic.pml" (state 10)
 20: proc 0 (user) line 14 "generic.pml" (state 10)
2 processes created
$

$ spin -v -u20 generic.pml
 0: proc - (:root:) creates proc 1 (user)
 1: proc 0 (user) line 6 "generic.pml" (state 13)[(printer)]
 2: proc 0 (user) line 7 "generic.pml" (state 2) [printer = 0]
 3: proc 0 (user) line 8 "generic.pml" (state 3) [(reader)]
 4: proc 1 (user) line 6 "generic.pml" (state 13)[(reader)]
 5: proc 0 (user) line 8 "generic.pml" (state 4) [reader = 0]
 6: proc 1 (user) line 13 "generic.pml" (state 8) [reader = 0]
 7: proc 0 (user) line 10 "generic.pml" (state 5) [printer = 1]
 8: proc 1 (user) line 14 "generic.pml" (state 9) [(printer)]
 9: proc 1 (user) line 14 "generic.pml" (state 10)[printer = 0]
 10: proc 0 (user) line 11 "generic.pml" (state 6) [reader = 1]
 11: proc 0 (user) line 19 "generic.pml" (state 14)[.(goto)]
 12: proc 0 (user) line 6 "generic.pml" (state 13)[(reader)]
 13: proc 1 (user) line 16 "generic.pml" (state 11)[reader = 1]
 14: proc 1 (user) line 17 "generic.pml" (state 12)[printer = 1]
 15: proc 1 (user) line 19 "generic.pml" (state 14)[.(goto)]
 16: proc 1 (user) line 6 "generic.pml" (state 13)[(reader)]
 17: proc 0 (user) line 13 "generic.pml" (state 8) [reader = 0]
 18: proc 1 (user) line 13 "generic.pml" (state 8) [reader = 0]
 19: proc 0 (user) line 14 "generic.pml" (state 9) [(printer)]
 20: proc 1 (user) line 14 "generic.pml" (state 9) [(printer)]

depth-limit (-u20 steps) reached
#processes: 2
 printer = 1
 reader = 0
 20: proc 1 (user) line 14 "generic.pml" (state 10)
 20: proc 0 (user) line 14 "generic.pml" (state 10)
2 processes created
$

 11

a verification
(checking a default property: absence of deadlock)

$ spin -a generic.pml
$ gcc –DBFS –o pan pan.c
$./pan
pan: invalid end state (at depth 4)
pan: wrote generic.pml.trail
(Spin Version 4.1.0 -- 19 November 2003)
Warning: Search not completed
 + Using Breadth-First Search
 + Partial Order Reduction

Full statespace search for:
 never claim - (none specified)
 assertion violations +
 cycle checks - (disabled by

-DSAFETY)
 invalid end states +

State-vector 20 byte, depth reached 4, errors: 1
 44 states, stored
 44 nominal states (stored-atomic)
 16 states, matched
 60 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)

1.253 memory usage (Mbyte)
$

$ spin -a generic.pml
$ gcc –DBFS –o pan pan.c
$./pan
pan: invalid end state (at depth 4)
pan: wrote generic.pml.trail
(Spin Version 4.1.0 -- 19 November 2003)
Warning: Search not completed
 + Using Breadth-First Search
 + Partial Order Reduction

Full statespace search for:
 never claim - (none specified)
 assertion violations +
 cycle checks - (disabled by

-DSAFETY)
 invalid end states +

State-vector 20 byte, depth reached 4, errors: 1
 44 states, stored
 44 nominal states (stored-atomic)
 16 states, matched
 60 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)

1.253 memory usage (Mbyte)
$

spin’s euphemism
for deadlock

stopped at first
error found

 12

inspection of the error trail
$ spin -t -v generic.pml
 1: proc 1 (user) line 7 "generic.pml" (state 1) [(printer)]
 2: proc 1 (user) line 7 "generic.pml" (state 2) [printer = 0]
 3: proc 0 (user) line 13 "generic.pml" (state 7) [(reader)]
 4: proc 0 (user) line 13 "generic.pml" (state 8) [reader = 0]
spin: trail ends after 4 steps
#processes: 2
 printer = 0
 reader = 0
 4: proc 1 (user) line 8 "generic.pml" (state 3)
 4: proc 0 (user) line 14 "generic.pml" (state 9)
2 processes created
$

$ spin -t -v generic.pml
 1: proc 1 (user) line 7 "generic.pml" (state 1) [(printer)]
 2: proc 1 (user) line 7 "generic.pml" (state 2) [printer = 0]
 3: proc 0 (user) line 13 "generic.pml" (state 7) [(reader)]
 4: proc 0 (user) line 13 "generic.pml" (state 8) [reader = 0]
spin: trail ends after 4 steps
#processes: 2
 printer = 0
 reader = 0
 4: proc 1 (user) line 8 "generic.pml" (state 3)
 4: proc 0 (user) line 14 "generic.pml" (state 9)
2 processes created
$

?A ?B

?B ?A

process 1 process 2

printer == 0
 &&
reader == 0

deadlock

 13

the Spin gui – getting fancy

 14

Spin, Promela, and LTL
• Acronyms:

– Spin : Simple Promela Interpreter, a nested acronym

– Promela: Process Meta Language, for behavior specification
– LTL : Linear Temporal Logic, for property specification

• Spin:
– model checker generator

• Promela:

– non-deterministic, guarded command language for specifying
the possible system behaviors in a distributed system design

• systems of interacting, asynchronous threads of execution

– the purpose is not to prevent the specification of bad or
unstructured designs (on the contrary)

• e.g., gotos are supported

– the purpose is to allow the specification of designs in such a
way that they can be checked with a model checker

 15

context

Promela
behavior

model

correctness
property

e.g., in LTL

SPIN

pan.c
model

checking
code

C
compiler

executable
model

checker

random and interactive
model simulation

error-trails
counter-examples to

correctness properties
guided simulation

-a

-i-v

-t

 16

central concepts
• finite-state models only: Promela models are always bounded

– boundedness in our case guarantees decidability
– finite state models can still permit infinite executions

• asynchronous behavior
– no hidden global system clock
– no implied synchronization between processes

• non-deterministic control structures
– to support (inspire?) abstraction from implementation level detail

• executability as a core part of the semantics
– every basic and compound statement is defined by a precondition

and an effect

– a statement can be executed, producing the effect, only when its
precondition is satisfied; otherwise, the statement is blocked

– example: q?m when channel q is non-empty, retrieve message m
else block (i.e., wait)

 17

3 types of objects

• processes
• global and local data objects
• message channels

process0 process1

local
data

global
data

local
data

message
channels

 18

processes

• process behavior is declared in proctype declarations
• a process is an instantiated proctype
• processes can be instantiated in two ways:

– in the initial system state
• by adding the prefix active to a proctype declaration

– in any other reachable system state
• with a run operator

active [2] proctype eager()
{

run eager();
run eager()

}

2 processes instantiated in initial system state

each process tries to instiantiate 2 more
copies, and then terminates

 19

the proctype eager

active [2] proctype eager()
{

run eager();
run eager()

}

semi-colons are statement separators not
statement terminators

run eager()

run eager()

stop

actions label state transitions
not states

why is this still a finite model?
run is a Promela operator
run eager() is a restricted form of a Promela expression
an expression can be used as a statement in Promela
run either returns the pid of the process it instantiates
 or it returns 0 if no new process can be instantiated
an expression statement is executable iff it evaluates to non-zero..
the maximum number of active processes is 255 (imposing the bound)

21

3 45 6

7

 20

run
proctype irun(byte x)
{
 printf(“it is me %d, %d\n”, x, _pid)
}

init {
 pid a, b;
 a = run irun(1);
 b = run irun(2);
 printf(“I created %d and %d\n”, a, b)
}

init is a predefined
initial process
(optional)

$ spin irun.pml
 it is me 1, 1
 I created 1 and 2
 it is me 2, 2
3 processes created
$

init plus two copies of irun

default indentation of output
(output of process i gets i+1 tab-stops)
suppressed with spin –T option

interleaving of statement executions
3 asynchronous processes running.
1 of 6 possible interleavings...

two local variables, invisible outside init
x is a local variable inside irun, initialized
at process initialization

‘_pid’ is a predefined local variable
‘pid’ and byte are data-types

parameter passing

two assignments
with run expressions
on the right

assignments and print statements
are unconditionally executable
expression statements are only
executable when they evaluate
to true

no ‘active’ prefix
used in this case

print statement

 21

process interaction and process state

• processes can synchronize their behavior in 2 ways
– through the use of global (shared) variables
– via message passing through channels

• buffered channels or rendezvous channels

– there is no global ‘clock’ that could be used for synchronization

• each process has its own local state
– process “program-counter” (i.e., control-flow point)

– values of all locally declared variables

• the model as a whole has a global state
– the value of all globally declared variables
– the contents of all message channels
– the set of all currently active processes

 22

dynamic process creation

• the state of the complete system is maintained in a
global state vector

• the state vector contains entries for
– the value of all global variables (including message channels)
– all active processes

• each active process containing:
– the value of all locally declared variables
– the program counter (the control-flow point)

globals

the process created first e.g., init the process created last

process 1 process 2 process n

 23

state vector contains a process stack

• processes are added and deleted in stack (LIFO) order

• a process can start and stop at any time, but it can disappear
from the state vector only in LIFO order

• process deletion takes 2 steps: termination and then death

• before a parent can die, all its children must die first…
– a process pid is only recycled when the process has died
– an init process always dies last: the first pid can never be recycled

globals process 1 process 2 process n

the process created first e.g., init the process created last

 24

how is finiteness preserved?

• Promela models are necessarily finite-state:
– there can be only finitely many active processes

– there can only be finitely many statements in a
proctype

– all data types have a strictly bounded range
• e.g., the range of a bit or bool is 0..1, the range of a pid

or byte is 0..255, the range of a short is -215..215-1, and the
range of an int is -231 .. 231-1

– all message channels have a bounded capacity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

