
Introduction to Model Checking
Lecture # 1: Motivation, Background, and Course Organization

Prof. Dr. Ir. Joost-Pieter Katoen

Lehrstuhl Software Modellierung and Verifikation

April 19, 2010



Software Errors
Software Correctness

Model Checking
Course Details

Therac-25 Radiation Overdosing (1985-87)

Radiation machine for treatment of
cancer patients

At least 6 cases of overdosis in period
1985–1987 (≈ 100-times dosis)

Three cancer patients died

Source: Design error in the control
software (race condition)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

AT&T Telephone Network Outage (1990)

January 1990: problem in New York
City leads to 9 h-outage of large parts
of U.S. telephone network

Costs: several 100 million US$

Source: software flaw (wrong
interpretation of break statement in
C)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Ariane 5 Crash (1996)

Crash of the european Ariane 5-missile in
June 1996

Costs: more than 500 million US$

Source: software flaw in the control software

A data conversion from a 64-bit floating
point to 16-bit signed integer

Efficiency considerations had led to the
disabling of the software handler (in Ada)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Pentium FDIV Bug (1994)

FDIV = floating point division unit

Certain floating point division
operations performed produced
incorrect results

Byte: 1 in 9 billion floating point
divides with random parameters would
produce inaccurate results

Loss: ≈ 500 million US$ (all flawed
processors were replaced) + enormous
image loss of Intel Corp.

Source: flawless realization of
floating-point division

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

The Quest for Software Correctness

Speech@50-years Celebration CWI Amsterdam

“It is fair to state, that in this digital era
correct systems for information processing
are more valuable than gold.”

Henk Barendregt

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

The Importance of Software Correctness

Rapidly increasing integration of ICT in different applications

embedded systems

communication protocols

transportation systems

⇒ reliability incrasingly depends on software!

Defects can be fatal and extremely costly

products subject to mass-production

safety-critical systems

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

What is System Verification?

Folklore “definition”

System verification amounts to check whether a system fulfills
the qualitative requirements that have been identified

Verification 6= validation

Verification = “check that we are building the thing right”

Validation = “check that we are building the right thing”

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Software Verification Techniques

Peer reviewing

static technique: manual code inspection, no software execution

detects between 31 and 93% of defects with median of about 60%

subtle errors (concurrency and algorithm defects) hard to catch

Testing

dynamic technique in which software is executed

Some figures

30% to 50% of software project costs devoted to testing

more time and effort is spent on validation than on construction

accepted defect density: about 1 defects per 1,000 code lines

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Bug Hunting: the Sooner, the Better

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Formal Methods

Intuitive description

Formal methods are the

“applied mathematics for modelling and analysing ICT systems”

Formal methods offer a large potential for:

obtaining an early integration of verification in the design process

providing more effective verification techniques (higher coverage)

reducing the verification time

Usage of formal methods

Highly recommended by IEC, FAA, and NASA for safety-critical software

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Formal Verification Techniques for Property P

Deductive methods

method: provide a formal proof that P holds

tool: theorem prover/proof assistant or proof checker

applicable if: system has form of a mathematical theory

Model checking

method: systematic check on P in all states

tool: model checker (Spin, NuSMV, UppAal, ...)

applicable if: system generates (finite) behavioural model

Model-based simulation or testing

method: test for P by exploring possible behaviours

applicable if: system defines an executable model
Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Simulation and Testing

Basic procedure:

take a model (simulation) or a realisation (testing)

stimulate it with certain inputs, i.e., the tests

observe reaction and check whether this is “desired”

Important drawbacks:

number of possible behaviours is very large (or even infinite)

unexplored behaviours may contain the fatal bug

About testing . . .

testing/simulation can show the presence of errors, not their absence

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Milestones in Formal Verification

Mathematical program correctness (Turing, 1949)

Syntax-based technique for sequential programs (Hoare, 1969)

for a given input, does a computer program generate the
correct output?
based on compositional proof rules expressed in predicate logic

Syntax-based technique for concurrent programs (Pnueli, 1977)

handles properties referring to states during the computation
based on proof rules expressed in temporal logic

Automated verification of concurrent programs
model-based instead of proof-rule based approach
does the concurrent program satisfy a given (logical) property?

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Example Proof Rules

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

The ACM Turing Award

Alan M. Turing (1912 - † 1954)

Mathematician, logician, crypto-specialist

Computational model: Turing Machine

Some Turing Award Winners

Edsger Dijkstra (1972)

Donald Knuth (1974)

Michael Rabin and Dana Scott (1976)

Stephen Cook (1982)

Rivest, Shamir and Adleman (2002)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

ACM Turing Award 2007

Recipients in February 2008

Edmund M. Clarke jr. (CMU, USA)

Allen E. Emerson (Texas at Austin, USA)

Joseph Sifakis (IMAG Grenoble, F)

Jury justification

“For their roles in developing Model-Checking
into a highly effective verification technology,
widely adopted in the hardware and software
industries.”

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Model Checking Overview

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

What is Model Checking?

Informal description

Model checking is an automated technique that, given
a finite-state model of a system and a formal property,
systematically checks whether this property holds
for (a given state in) that model.

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

What are Models?

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

What are Models?

Transition systems

States labeled with basic propositions

Transition relation between states

Action-labeled transitions to facilitate composition

Expressivity

Programs are transition systems

Multi-threading programs are transition systems

Communicating processes are transition systems

Hardware circuits are transition systems

What else?

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

What are Properties?

Example properties

Can the system reach a deadlock situation?

Can two processes ever be simultaneously in a critical section?

On termination, does a program provide the correct output?

Temporal logic

Propositional logic

Modal operators such as � “always” and ♦ “eventually”

Interpreted over state sequences (linear)

Or over infinite trees of states (branching)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

NASA’s Deep Space-1 Spacecraft

Model checking

has been applied to several
modules of this spacecraft

launched in October 1998

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

A Small Program Fragment

process Inc = while true do if x < 200 then x := x + 1 od

process Dec = while true do if x > 0 then x := x − 1 od

process Reset = while true do if x = 200 then x := 0 od

is x always between (and including) 0 and 200?

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Modeling in NanoPromela

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

How to Check?

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

A Counterexample

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Breaking the Error

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

The Model Checking Process

Modeling phase

model the system under consideration
as a first sanity check, perform some simulations
formalise the property to be checked

Running phase

run the model checker to check the validity of the property in
the model

Analysis phase

property satisfied? → check next property (if any)
property violated? →

1 analyse generated counterexample by simulation
2 refine the model, design, or property . . . and repeat the entire

procedure

out of memory? → try to reduce the model and try again

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

The Pros of Model Checking

widely applicable (hardware, software, protocol systems, ...)

allows for partial verification (only most relevant properties)

potential “push-button” technology (software-tools)

rapidly increasing industrial interest

in case of property violation, a counterexample is provided

sound and interesting mathematical foundations

not biased to the most possible scenarios (such as testing)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

The Cons of Model Checking

main focus on control-intensive applications (less
data-oriented)

model checking is only as “good” as the system model

no guarantee about completeness of results

impossible to check generalisations (in general)

Nevertheless:

Model checking is a effective technique
to expose potential design errors

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Striking Model-Checking Examples

Security: Needham-Schroeder encryption protocol
error that remained undiscovered for 17 years unrevealed

Transportation systems
train model containing 10476 states

Model checkers for C, Java and C++
used (and developed) by Microsoft, Digital, NASA
successful application area: device drivers

Dutch storm surge barrier in Nieuwe Waterweg

Software in the current/next generation of space missiles
NASA’s Mars Pathfinder, Deep Space-1, JPL LARS group

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Course Topics

What are appropriate models?

transition systems

from programs to transition systems

from circuits to transition systems

multi-threading, communication, . . .

nanoPromela: an example modeling language

What are properties?

safety: “something bad never happen”

liveness: “something good eventually happens”

fairness: “if something may happen frequently, it will happen”

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Course Topics

How to check regular properties?

finite-state automata and regular safety properties

Büchi automata and ω-regular properties

model checking: nested depth-first search

How to express properties succinctly?

Linear-time Temporal Logic (LTL): syntax and semantics

What can be expressed in LTL?

LTL model checking: algorithms, complexity

How to treat fairness in LTL

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Course Topics

How to express properties succinctly?

Computation Tree Logic (CTL): syntax and semantics

What can be expressed in CTL?

CTL model checking: algorithms, complexity

How to treat fairness in CTL

How to make models smaller?

Equivalences and pre-orders on transition systems

Which properties are preserved?

Minimization algorithms

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Course Material

Principles of Model Checking

Christel Baier

TU Dresden, Germany

Joost-Pieter Katoen

RWTH Aachen University, Germany, and

University of Twente, the Netherlands

Gerard J. Holzmann, NASA JPL, Pasadena:

“This book offers one of the most comprehensive

introductions to logic model checking techniques

available today. The authors have found a way to

explain both basic concepts and foundational

theory thoroughly and in crystal clear prose.”
Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Lectures

Lecture

Mon 12:30 - 14:00 (AH3), Tue 08:15-09:45 (AH2)

Check regularly course webpage for possible “no shows”

Material

Lecture slides (with gaps) are made available on webpage

Copies of the book are available in the CS library

Website

moves.rwth-aachen.de/i2/424

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Exercises and Exam

Exercise Classes

Wed 13:30 - 15:00 in AH3 (start: April 28)

Instructors: Tingting Han and Alexandru Mereacre

Weekly exercise series

Intended for groups of 2 students

New series: every Wed on course webpage (start: April 21)

Solutions: Wed (before 13:30) one week later

Student assistants: Silvio de Carolis

Exam:

July 30, 2010 and September 27, 2010 (written exam)

participation if ≥ 50% of all exercise points are gathered

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking



Software Errors
Software Correctness

Model Checking
Course Details

Course Embedding

Aim of the course

It’s about the foundations of model checking, not its usage!

Prerequisites

Automata and language theory

Algorithms and data structures

Computability and complexity theory

Some follow-up courses

Advanced model checking (WS 2010/11)

Practical exercises model checking (WS 2010/11)

Automata and reactive systems (Thomas)

Satisfiability checking (Abráhám)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking


	Software Errors
	Software Correctness
	Model Checking
	Course Details

