MVS - Esercizi proposti - 28 marzo 2013

Esercizio 1

Consider the transition system given below. Formally define its traces!

Esercizio 2

Consider the set AP of atomic propositions defined by $AP = \{x = 0, x > 1\}$ and consider a non-terminating sequential computer program P that manipulates the variable x over the domain \mathbb{N} . Formulate the following informally stated properties as LT properties:

• false and true

- x exceeds one only finitely many times
- \bullet initially x is equal to zero
- \bullet the value of x alternates between zero and one
- \bullet initially x differs from zero
- \bullet initially x is equal to zero, but at some point x exceeds one

Determine which of these LT properties are safety properties.

Esercizio 3

Let $AP = \{a, b\}$ and let P be the LT property of all infinite words $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ such that there exists $n \geq 0$ with $a \in A_i$ for $0 \leq i < n$, $\{a, b\} = A_n$ and $b \in A_j$ for infinitely many $j \geq 0$. Provide a decomposition $P = P_{safe} \cap P_{live}$ into a safety and into a liveness property.

Esercizio 4

Let P denote the set of traces of the form $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ such that

$$\stackrel{\infty}{\exists} k. \ A_k = \{a, b\} \quad \land \quad \exists n \ge 0. \ \forall k > n. \ \big(a \in A_k \Rightarrow b \in A_{k+1}\big).$$

Consider the following fairness assumptions with respect to the transition system TS outlined on the right:

- a) $\mathcal{F}_1 = (\{\{\alpha\}\}, \{\{\beta\}, \{\delta, \gamma\}, \{\eta\}\}, \emptyset).$ Decide whether $TS \models_{\mathcal{F}_1} P.$
- b) $\mathcal{F}_2 = (\{\{\alpha\}\}, \{\{\beta\}, \{\gamma\}\}\}, \{\{\eta\}\}).$ Decide whether $TS \models_{\mathcal{F}_2} P.$

Justify your answers!

Esercizio 5

Let $AP = \{a, b, c\}$. Consider the following linear time properties:

- (a) If a becomes valid, afterwards b stays valid ad infinitum or until c holds.
- (b) Between two neighbouring occurrences of a, b always holds.
- (c) Between two neighbouring occurrences of a, b occurs more often than c.
- (d) $a \wedge \neg b$ and $b \wedge \neg a$ are valid in alternation or until c becomes valid.

For each property P_i ($1 \le i \le 4$), decide if it is a regular safety property (argument why!) and if so, define the NFA A_i with $\mathcal{L}(A_i) = BadPref(P_i)$.

Hint: You may use propositional formulas over the set AP as transition labels.

Esercizio 6

Consider the GNBA outlined on the right with acceptance sets $F_1 = \{q_1\}$ and $F_2 = \{q_2\}$. Construct an equivalent NBA using the transformation introduced in the lecture.

Esercizio 7

Consider the following transition system TS

and the regular safety property

$$P_{safe} = \text{ ``always if a is valid and $b \land \neg c$ was valid somewhere before, then a and b do not hold thereafter at least until c holds"}$$

As an example, it holds:

$$\{b\}\emptyset\{a,b\}\{a,b,c\} \in pref(P_{safe})$$

 $\{a,b\}\{a,b\}\emptyset\{b,c\} \in pref(P_{safe})$
 $\{b\}\{a,c\}\{a\}\{a,b,c\} \in BadPref(P_{safe})$
 $\{b\}\{a,c\}\{a,c\}\{a\} \in BadPref(P_{safe})$

Questions:

- (a) Define an NFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = MinBadPref(P_{safe})$.
- (b) Decide whether $TS \models P_{safe}$ using the $TS \otimes \mathcal{A}$ construction. Provide a counterexample if $TS \not\models P_{safe}$.