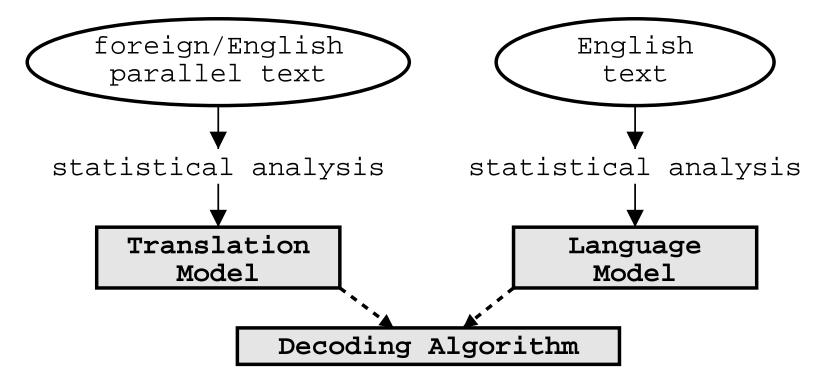
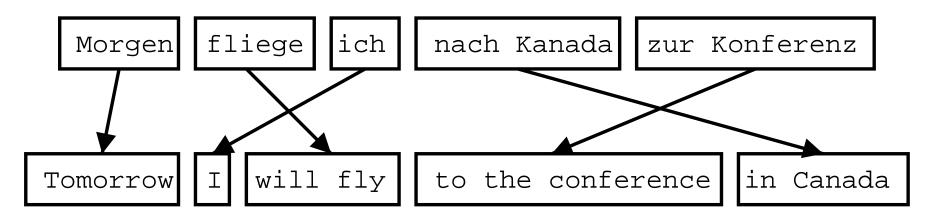
Machine Translation Decoding


Philipp Koehn, University of Edinburgh

9 February 2009

Statistical Machine Translation


• Components: Translation model, language model, decoder

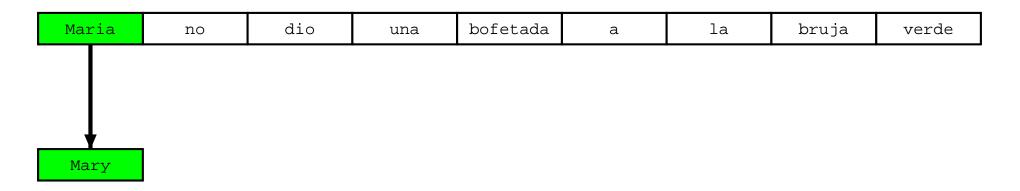
nformatics

Phrase-Based Translation

- Foreign input is segmented in phrases
 - any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered

Phrase Translation Table

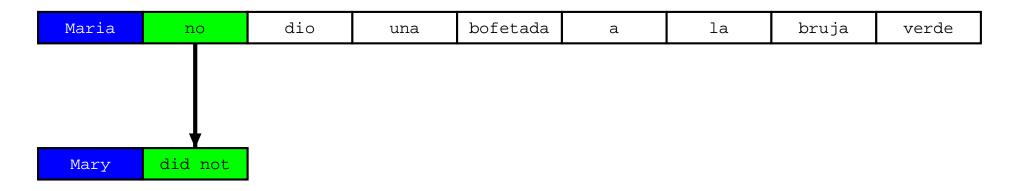
• Phrase Translations for "den Vorschlag":


English	$\phi(\mathbf{e} \mathbf{f})$	English	$\phi(\mathbf{e} \mathbf{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal ,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

Maria	no	dio	una	bofetada	a	la	bruja	verde
-------	----	-----	-----	----------	---	----	-------	-------

- Build translation left to right
 - *select foreign* words to be translated

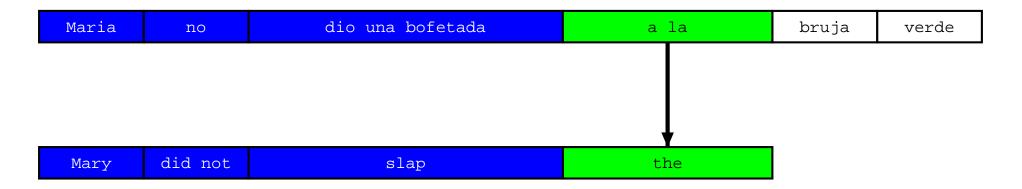
- Build translation *left to right*
 - select foreign words to be translated
 - *find English* phrase translation
 - add English phrase to end of partial translation



Maria	no	dio	una	bofetada	a	la	bruja	verde
-------	----	-----	-----	----------	---	----	-------	-------

Mary

- Build translation left to right
 - select foreign words to be translated
 - find English phrase translation
 - add English phrase to end of partial translation
 - *mark foreign* words as translated


• One to many translation

• Many to one translation

• Many to one translation

Maria	no	dio una bofetada	a la	bruja	verde
Mary	did not	slap	the	green	

• Reordering

Maria	no	dio una bofetada	a la	bruja	verde
Mary	did not	slap	the	green	witch

• Translation *finished*

Translation Options

Maria	no	dio	una	bofetada	a	la	bruja	verde
<u>Mary</u>	not did_not	give	<u>a slap</u>		t.o by	the	wit.ch green	green witch
	<u> no </u>	t_give	slap			the		
		5				le		
			sl	ap	the witch			

- Look up *possible phrase translations*
 - many different ways to *segment* words into phrases
 - many different ways to *translate* each phrase

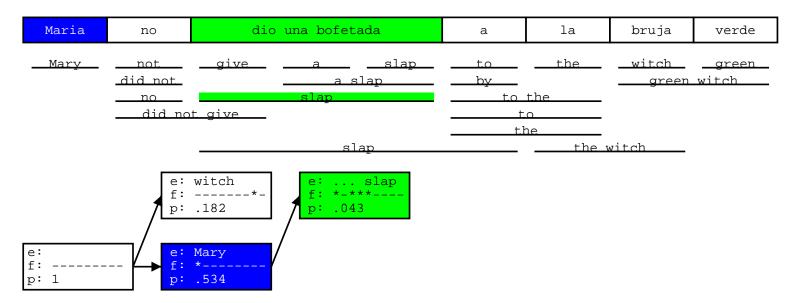
Maria	no	dio	una	bofetada	a	la	bruja	verde
<u>Mary</u>	not didnot	give	<u> </u>	<u>slap</u>	t.o by	the	witch green	<u> green </u> witch
	<u>no</u> did no	t give	slap			the		
	<u> </u>	<u> </u>			tł	ne		
			sl	ар		the v	witch	

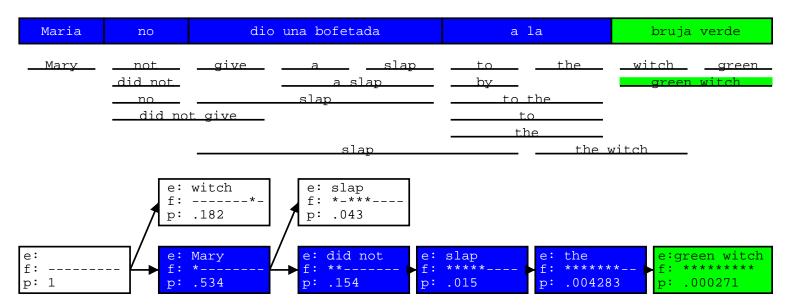
- Start with empty hypothesis
 - e: no English words
 - f: no foreign words covered
 - p: probability 1

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	<u>not</u> did not	give	aslap a_slap		to by	<u>the</u>	witch green	green witch
	<u> no </u> did no	slap			tot	the o		
					th	ne		
			sl	ар		the v	vitch	


- Pick translation option
- Create *hypothesis*
 - e: add English phrase Mary
 - f: first foreign word covered
 - p: probability 0.534

A Quick Word on Probabilities


- Not going into detail here, but...
- Translation Model
 - phrase translation probability p(Mary|Maria)
 - reordering costs
 - phrase/word count costs
 - ...
- Language Model
 - uses trigrams:
 - $p(Mary did not) = p(Mary|START) \times p(did|Mary,START) \times p(not|Mary did)$


• Add another *hypothesis*

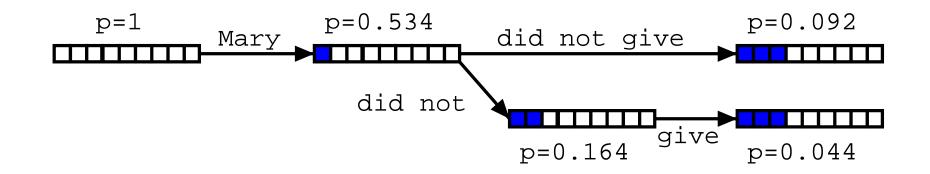
• Further hypothesis expansion

- ... until all foreign words *covered*
 - find *best hypothesis* that covers all foreign words
 - *backtrack* to read off translation

Maria dio una bofetada la bruja verde no а <u>aive</u> slap the witch Marv not green did not green witch slap hv slap to the no <u>did not give</u> to the slap the witch e: witch e: slap f: *-*** f: ----p: .182 p: .043 e: Mary e: slap e: e: did not e: the e:green witch f: f: f: **__ f: * * * * f: * * * * * f: ******* p: .015 .004283 p: .000271 p: 1 p: .534 p: .154 p: Z à

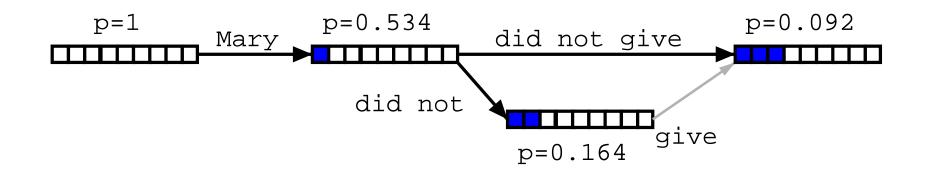
Hypothesis Expansion

- Adding more hypothesis
- \Rightarrow *Explosion* of search space

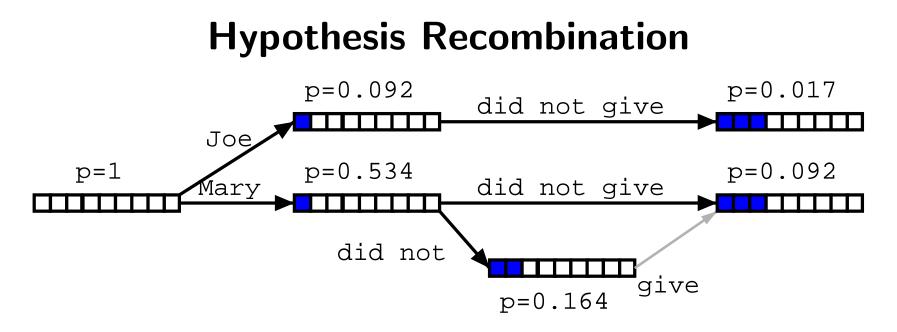


Explosion of Search Space

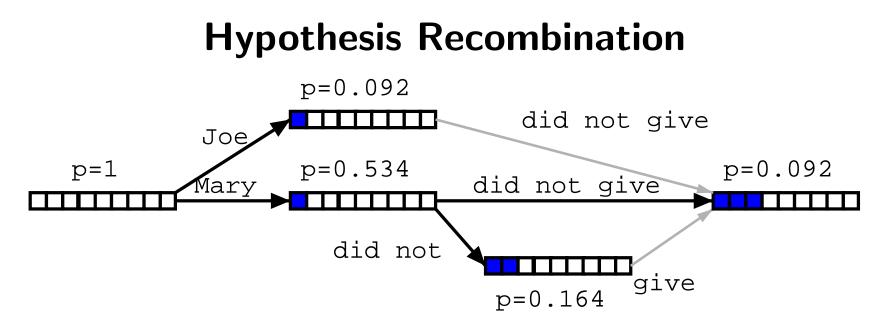
- Number of hypotheses is *exponential* with respect to sentence length
- \Rightarrow Decoding is NP-complete [Knight, 1999]
- \Rightarrow Need to *reduce search space*
 - risk free: hypothesis recombination
 - risky: histogram/threshold pruning


Hypothesis Recombination

• Different paths to the *same* partial translation

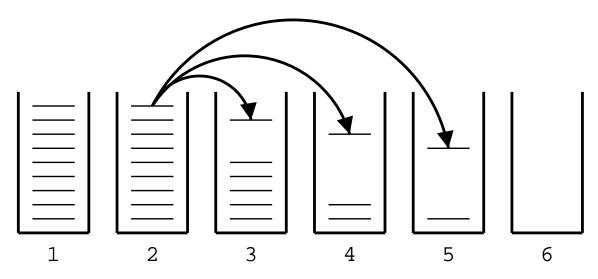


Hypothesis Recombination


- Different paths to the same partial translation
- \Rightarrow Combine paths
 - drop weaker path
 - keep pointer from weaker path (for lattice generation)

- Recombined hypotheses do *not* have to *match completely*
- No matter what is added, weaker path can be dropped, if:
 - *last two English words* match (matters for language model)
 - *foreign word coverage* vectors match (effects future path)

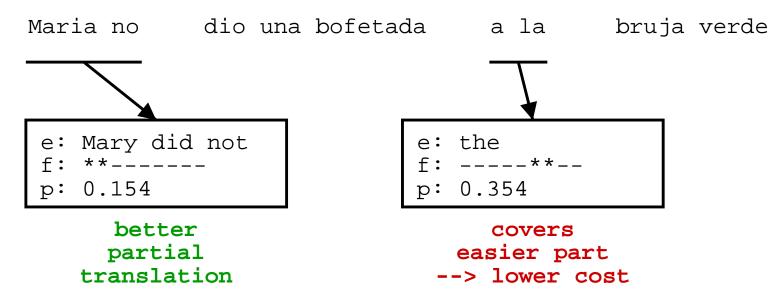
- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)
- \Rightarrow Combine paths



Pruning

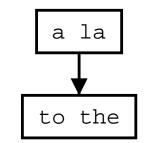
- Hypothesis recombination is *not sufficient*
- ⇒ Heuristically *discard* weak hypotheses early
- Organize Hypothesis in stacks, e.g. by
 - *same* foreign words covered
 - *same number* of foreign words covered
 - *same number* of English words produced
- Compare hypotheses in stacks, discard bad ones
 - histogram pruning: keep top n hypotheses in each stack (e.g., n=100)
 - threshold pruning: keep hypotheses that are at most α times the cost of best hypothesis in stack (e.g., $\alpha = 0.001$)

Hypothesis Stacks

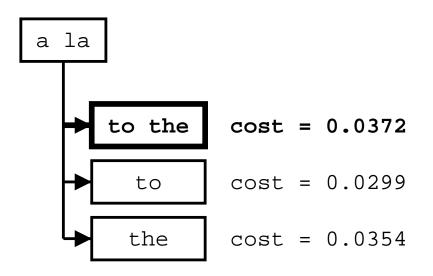


- Organization of hypothesis into stacks
 - here: based on *number of foreign words* translated
 - during translation all hypotheses from one stack are expanded
 - expanded Hypotheses are placed into stacks

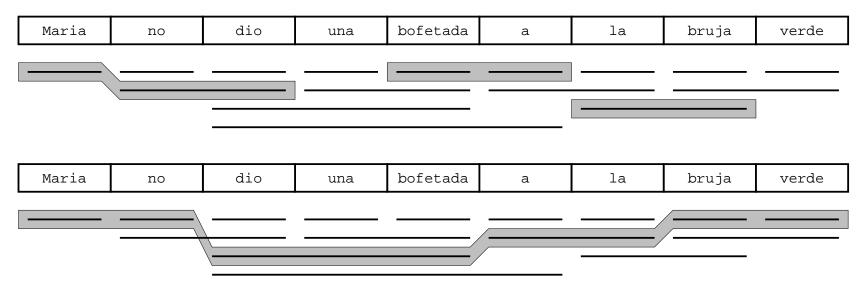
Comparing Hypotheses


• Comparing hypotheses with *same number of foreign words* covered

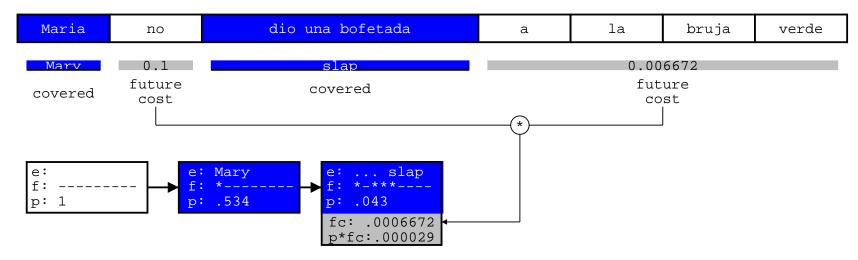
- Hypothesis that covers *easy part* of sentence is preferred
- \Rightarrow Need to consider **future cost** of uncovered parts


Future Cost Estimation

- *Estimate cost* to translate remaining part of input
- Step 1: estimate future cost for each *translation option*
 - look up translation model cost
 - estimate language model cost (no prior context)
 - ignore reordering model cost
 - \rightarrow LM * TM = p(to) * p(the|to) * p(to the|a la)


Future Cost Estimation: Step 2

• Step 2: find *cheapest cost* among translation options


Future Cost Estimation: Step 3

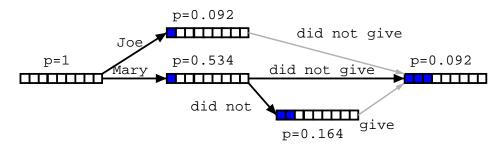
- Step 3: find *cheapest future cost path* for each span
 - can be done *efficiently* by dynamic programming
 - future cost for every span can be *pre-computed*

Future Cost Estimation: Application

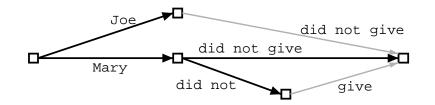
- Use future cost estimates when *pruning* hypotheses
- For each *uncovered contiguous span*:
 - look up *future costs* for each maximal contiguous uncovered span
 - *add* to actually accumulated cost for translation option for pruning

A* search

- Pruning might drop hypothesis that lead to the best path (search error)
- **A* search**: safe pruning
 - future cost estimates have to be accurate or underestimates
 - lower bound for probability is established early by
 depth first search: compute cost for one complete translation
 - if cost-so-far and future cost are worse than *lower bound*, hypothesis can be safely discarded
- Not commonly done, since not aggressive enough



Limits on Reordering


- Reordering may be **limited**
 - Monotone Translation: No reordering at all
 - Only phrase movements of at most \boldsymbol{n} words
- Reordering limits *speed* up search (polynomial instead of exponential)
- Current reordering models are weak, so limits *improve* translation quality

Word Lattice Generation

- Search graph can be easily converted into a word lattice
 - can be further mined for **n-best lists**
 - \rightarrow enables **reranking** approaches
 - \rightarrow enables discriminative training

Sample N-Best List

• Simple N-best list:

Translation ||| Reordering LM TM WordPenalty ||| Score this is a small house ||| 0 -27.0908 -1.83258 -5 ||| -28.9234 this is a little house ||| 0 -28.1791 -1.83258 -5 ||| -30.0117 it is a small house ||| 0 -27.108 -3.21888 -5 ||| -30.3268 it is a little house ||| 0 -28.1963 -3.21888 -5 ||| -31.4152 this is an small house ||| 0 -31.7294 -1.83258 -5 ||| -33.562 it is an small house ||| 0 -32.3094 -3.21888 -5 ||| -35.5283 this is an little house ||| 0 -33.7639 -1.83258 -5 ||| -35.5965 this is a house small ||| -3 -31.4851 -1.83258 -5 ||| -36.3176 this is a house little ||| -3 -31.5689 -1.83258 -5 ||| -36.4015 it is an little house ||| 0 -34.3439 -3.21888 -5 ||| -37.5628 it is a house small ||| -3 -31.5022 -3.21888 -5 ||| -37.7211 this is an house small ||| -3 -32.8999 -1.83258 -5 ||| -37.7325 it is a house little ||| -3 -31.586 -3.21888 -5 ||| -37.8049 this is an house little ||| -3 -32.9837 -1.83258 -5 ||| -37.8163 the house is a little ||| -7 -28.5107 -2.52573 -5 ||| -38.0364 the is a small house ||| 0 -35.6899 -2.52573 -5 ||| -38.2156 is it a little house ||| -4 -30.3603 -3.91202 -5 ||| -38.2723 the house is a small ||| -7 -28.7683 -2.52573 -5 ||| -38.294 it 's a small house ||| 0 -34.8557 -3.91202 -5 ||| -38.7677 this house is a little ||| -7 -28.0443 -3.91202 -5 ||| -38.9563 it 's a little house ||| 0 -35.1446 -3.91202 -5 ||| -39.0566 this house is a small ||| -7 -28.3018 -3.91202 -5 ||| -39.2139