Introduction to Data-Driven
Dependency Parsing

Introductory Course, ESSLLI 2007
Ryan McDonald! Joakim Nivre?

1Google Inc., New York, USA
E-mail: ryanmcd@google.com

2Uppsala University and Vaxjé University, Sweden
E-mail: nivre@msi.vxu.se

Introduction to Data-Driven Dependency Parsing 1(63)

Introduction

Overview of the Course

Dependency parsing (Joakim)
Machine learning methods (Ryan)
Transition-based models (Joakim)
Graph-based models (Ryan)

Loose ends (Joakim, Ryan):

» Other approaches
» Empirical results
» Available software

vVVvYy Vv VYy

Introduction to Data-Driven Dependency Parsing 2(63)

Introduction

Notation Reminder

» Sentence x = wp, wi, ..., Wy, With wy = root
» L={h,..., Iy} set of permissible arc labels

» Let G = (V, A) be a dependency graph for sentence x where:
» V={0,1,...,n} is the vertex set
» Ais the arc set, i.e., (i,/, k) € A represents a dependency from
w; to w; with label Iy € L

» By the usual definition, G is a tree

Introduction to Data-Driven Dependency Parsing 3(63)

Introduction

Data-Driven Parsing

Goal: Learn a good predictor of dependency graphs
Input: x
Output: dependency graph/tree G

Last lecture:

» Parameterize parsing by transitions
» Learn to predict transitions given the input and a history
» Predict new graphs using deterministic parsing algorithm

vV vy VYy

This lecture:

v

» Parameterize parsing by dependency arcs
» Learn to predict entire graphs given the input
» Predict new graphs using spanning tree algorithms

Introduction to Data-Driven Dependency Parsing 4(63)

Introduction

Lecture 4: Qutline

» Graph theory refresher
» Arc-factored models (a.k.a. Edge-factored models)
» Maximum spanning tree formulation
» Projective and non-projective inference algorithms
» Partition function and marginal algorithms — Matrix Tree
Theorem
» Beyond Arc-factored Models

» Vertical and horizontal markovization
» Approximations

Introduction to Data-Driven Dependency Parsing 5(63)

Graph Theory Refresher

Some Graph Theory Reminders

» A graph G = (V,A) is a set of verteces V and arcs (/,)) € A,
where i,j € V

» Undirected graphs: (i,j) € A< (j,i) €A
» Directed graphs (digraphs): (i,j) € A= (j,i) € A

/O

VZay4

Introduction to Data-Driven Dependency Parsing

Graph Theory Refresher

Multi-Digraphs

» A multi-digraph is a digraph where there can be multiple arcs
between verteces

» G=(V,A)

> (i,j, k) € A represents the k' arc from vertex i to vertex j

*

Introduction to Data-Driven Dependency Parsing

Graph Theory Refresher

Directed Spanning Trees (a.k.a. Arborescence)

» A directed spanning tree of a (multi-)digraph G = (V, A), is a
subgraph G’ = (V', A’) such that:
» V=V
> ACA and |A] = V| -1
» G’ is a tree (acyclic)

» A spanning tree of the following (multi-)digraphs

O O P
o<\ o/ 0\qu

Y

A

AN
N

Introduction to Data-Driven Dependency Parsing

Weighted Directed Spanning Trees

» Assume we have a weight function for each arc in a
multi-digraph G = (V, A)

» Define W,f > 0 to be the weight of (i,/, k) € A for a
multi-digraph

» Define the weight of directed spanning tree G’ of graph G as

w(G') = H W,f

(ij,k)eG’

» Notation: (i,j, k) € G = (V,A) < the arc (i,j, k) € A

Introduction to Data-Driven Dependency Parsing 9(63)

Graph Theory Refresher

Maximum Spanning Trees (MST)
of (Multi-)Digraphs

» Let T(G) be the set of all spanning trees for graph G

» The MST Problem: Find the spanning tree G’ of the graph G
that has highest weight

G' = argmax w(G’) = arg max H w;
G'eT(G) G'eT(G) (i.k)EG’

» Solutions ... to come.

Introduction to Data-Driven Dependency Parsing 10(63)

Arc-factored Models

Arc-Factored Dependency Models

» Remember: Data-driven parsing parameterizes model and
then learns parameters from data
» Arc-factored model

» Assumes that the score / probability / weight of a dependency
graph factors by its arcs

w(G) = H W,f look familiar?
(id,k)€G

» wk is the weight of creating a dependency from word w; to w;
with label /;

» Thus there is an assumption that each dependency decision is
independent
> Strong assumption! Will address this later.

Introduction to Data-Driven Dependency Parsing 11(63)

Arc-factored Models

Arc-Factored Dependency Models Example

» Weight of dependency graph is 10 x 30 x 30 = 9000

root o
10 -
saw

S

L3007 30 .
John Mary

» In practice arc weights are much smaller

Introduction to Data-Driven Dependency Parsing 12(63)

Arc-factored Models

Important Concept G,

» For input sentence x = wy, ..., w,, define G, = (Vi, Ax) as:
> XI{O,].,...,”}
» A ={(i,j,k)|Vij€ Viand I €L}
» Thus, Gy is complete multi-digraph over vertex set
representing words

Theorem
Every valid dependency graph for sentence x is equivalent to a
directed spanning tree for G, that originates out of vertex 0

» Falls out of definitions of tree constrained dependency graphs
and spanning trees

» Both are spanning/connected (contain all words)
» Both are trees

Introduction to Data-Driven Dependency Parsing 13(63)

Arc-factored Models

Three Important Problems

Theorem
Every valid dependency graph for sentence x is equivalent to a
directed spanning tree for Gy that originates out of vertex 0

1. Inference = finding the MST of Gy

G = argmax w(G) = arg max H W
GeT(Gyx) GeT(Gx) (iJ,K)EG

2. Defining Wéf and its feature space

: k
3. Learning wj;

» Can use perceptron-based learning if we solve (1)

Introduction to Data-Driven Dependency Parsing 14(63)

Arc-factored Models

Inference - Getting Rid of Arc Labels

G = argmax w(G) = argmax H W,f
GET(GX) GET(GX) (iJ,k)EG

» Consider all the arcs between vertexes i and j

» Now, consider the arc (i,, k) such that,
(i,j, k) = argll(nax W,:I;

Theorem
The highest weighted dependency tree for sentence x must contain
the arc (/,/, k) — (assuming no ties)

» Easy proof: if not, sub in (i, j, k) and get higher weighted tree

Introduction to Data-Driven Dependency Parsing 15(63)

Arc-factored Models

Inference - Getting Rid of Arc Labels

G = argmax w(G) = argmax H W,f
GGT(GX) GGT(Gx) (i,j,k)EG

» Thus, we can reduce G, from a multi-digraph to a simple
digraph
» Just remove all arcs that do not satisfy
(i,j, k) = arg max W,El;
k

» Problem is now equal to the MST problem for digraphs

We will use the Chu-Liu-Edmonds Algorithm
[Chu and Liu 1965, Edmonds 1967]

Introduction to Data-Driven Dependency Parsing 16(63)

Arc-factored Models

Chu-Liu-Edmonds Algorithm

» Finds the MST originating out of a vertex of choice
» Assumes weight of tree is sum of arc weights
» No problem, we can use logarithms

G = argmax H W,-jf
GET(Gx) (iJ,k)EG

= argmax log H W,:I;
GeT(Gx) (ij,k)EG

= argmax Z Iogw,iY
GET(Gx) (i) k)eG

So if we let Wéf = log W,j‘ then we get

G = argmax Z W,-jf
GET(G) (i i pyec

Introduction to Data-Driven Dependency Parsing 17(63)

Arc-factored Models

Chu-Liu-Edmonds

» x = root John saw Mary

Introduction to Data-Driven Dependency Parsing 18(63)

Arc-factored Models

Chu-Liu-Edmonds

» Find highest scoring incoming arc for each vertex

root

20 " Ngu 30

;) N\

John __ 30 Mary

» If this is a tree, then we have found MST!!

Introduction to Data-Driven Dependency Parsing 19(63)

Arc-factored Models

Chu-Liu-Edmonds

» If not a tree, identify cycle and contract

» Recalculate arc weights into and out-of cycle

Introduction to Data-Driven Dependency Parsing 20(63)

Arc-factored Models

Chu-Liu-Edmonds

s
— Sy 9
20 030 N2
9\, / jm< \ Toot L2 Py 30
John __ 30 0 __ Mary 20 " e 380 o7 Wis - \
. \ (John _ - Mary

3 John __ 30 Mary e \31_/

» Qutgoing arc weights

» Equal to the max of outgoing arc over all vertexes in cycle
» e.g., John — Mary is 3 and saw — Mary is 30

Introduction to Data-Driven Dependency Par: 21(63)

Arc-factored Models

Chu-Liu-Edmonds

: 9
[TOOt 10 root 40
9 20 " squy 30 root - '5\ e 30
\ / VAN N Lo e Y
John __ 30 0 Mary 20 Sal) 30 P L
11 \ r John - Mary
3 John _ 30 Mary S 31

» Incoming arc weights
» Equal to the weight of best spanning tree that includes head of
incoming arc, and all nodes in cycle
root — saw — John is 40 (*¥*)
root — John — saw is 29

Introduction to Data-Driven Dependency Par: 22(63)

Arc-factored Models

Chu-Liu-Edmonds

Theorem
The weight of the MST of this contracted graph is equal to the
weight of the MST for the original graph

— 9

To0t 40
SRS,
=" saw s 30
/’I ,sz r’/ \
t John .-~ Mary

e

» Therefore, recursively call algorithm on new graph

Introduction to Data-Driven Dependency Parsing 23(63)

Arc-factored Models

Chu-Liu-Edmonds

» This is a tree and the MST for the contracted graph!!

root 40
R
,.-"’ saw 30
,,-" ‘QU35,,// \
{John,,,-" Mary

» Go back up recursive call and reconstruct final graph

Introduction to Data-Driven Dependency Parsing 24(63)

Arc-factored Models

Chu-Liu-Edmonds

» This is the MSTI!!

root
~a
saw

=10

. 30 30 .
John Mary

Introduction to Data-Driven Dependency Parsing 25(63)

Arc-factored Models

Chu-Liu-Edmonds Code

Chu-Liu-Edmonds(Gx, w)
1. Let M= {(i*,j):j € Vi, i* = argmax; wj}
2. Let Gy = (Vi, M)
3 If Gy has no cycles, then it is an MST: return Gy
4. Otherwise, find a cycle C in Gy
5. Let < G¢, ¢, ma >= contract(G, C, w)
6. Let G = Chu-Liu-Edmonds(Gc, w)
7. Find vertex i € C such that (i’,c) € G and ma(i’,c) =i
8. Find arc (i”,i) € C
9. Find all arc (c,i"”") € G
10, G = GU {(ma(e, "), " Vyiemec U C UL)} — (")
11. Remove all vertices and arcs in G containing ¢
12. return G

: e — k
> Reminder: wj; = arg max; w;;

Introduction to Data-Driven Dependency Parsing 26(63)

Arc-factored Models

Chu-Liu-Edmonds Code (II)

contract(G = (V, A), C,w)
1. Let G¢ be the subgraph of G excluding nodes in C
2. Add a node c to G¢ representing cycle C
3. ForieV—C:3uec(i"i)eA
Add arc (c,i) to G¢ with
ma(c, i) = argmax; ¢ score(i’, i)
i’ = ma(c,i)
score(c, i) = score(i’, i)
4. ForieV —C:3uccli,i") €A
Add edge (i, c) to G¢ with
ma(i, c) = argmaxy ¢ ¢ [score(i, i") — score(a(i’), i")]
i" = ma(i, c)
score(i, c) = [score(i, i") — score(a(i"), i") + score(C)]
where a(v) is the predecessor of v in C
and score(C) = 37, ¢ ¢ score(a(v), v)
5. return < G¢,c,ma >

Introduction to Data-Driven Dependency Parsing 27(63)

Arc-factored Models

Chu-Liu-Edmonds

» Naive implementation O(n® + |L|n?)
» Converting G, to a digraph — O(|L|n?)
Finding best arc — O(n?)
Contracting cycles — O(n?)
At most n recursive calls
» Better algorithms run in O(|L|n?) [Tarjan 1977]
» Chu-Liu-Edmonds searches all dependency graphs

» Both projective and non-projective
» Thus, it is an exact non-projective search algorithm!!!

v vy

» What about the projective case?

Introduction to Data-Driven Dependency Parsing 28(63)

Arc-factored Models

Arc-factored Projective Parsing

» Projective dependency structures are nested

» Can use CFG like parsing algorithms — chart parsing
» Each chart item (triangle) represents the weight of the best
tree rooted at word h spanning all the words from / to j
» Analog in CFG parsing: items represent best tree rooted at
non-terminal NT spanning words / to j

» Goal: Find chart item rooted at O spanning 0 to n

Base case
Length 1, h =i =j, has weight 1

Introduction to Data-Driven Dependency Parsing pLI()]

Arc-factored Models

Arc-factored Projective Parsing

» All projective graphs can be written as the combination of two
smaller adjacent graphs

A i
iA

L

dm

» Inductive hypothesis — algorithm has calculated score of
smaller items correctly (just like CKY)

Introduction to Data-Driven Dependency Parsing 30(63)

Arc-factored Models

Arc-factored Projective Parsing

» Chart item filled in a bottom-up manner
» First do all strings of length 1, then 2, etc. just like CKY

» Weight of new item: max;jx w(A) x w(B) x wf},
» Algorithm runs in O(|L|n®)
» Use back-pointers to extract best parse (like CKY)

Introduction to Data-Driven Dependency Parsing 31(63)

Arc-factored Models

Arc-factored Projective Parsing
» O(|L|n®) is not that good

> [Eisner 1996] showed how this can be reduced to O(|L|n?)
» Key: split items so that sub-roots are always on periphery

hh' j

IS
_—

h j

Introduction to Data-Driven Dependency Parsing 32(63)

Arc-factored Models

Inference in Arc-Factored Models

» Non-projective case

» O(|L|n?) with the Chu-Liu-Edmonds MST algorithm
» Projective case

» O(|L|n®) with the Eisner algorithm

» But we still haven't defined the form of W;

» Or how to learn these parameters

Introduction to Data-Driven Dependency Parsing 33(63)

Arc-factored Models

Arc weights as linear classifiers

» Arc weights are a linear combination of features of the arc, f,
and a corresponding weight vector w

» Raised to an exponent (simplifies some math ...)
» What arc features?

» [McDonald et al. 2005] discuss a number of binary features

Introduction to Data-Driven Dependency Parsing 34(63)

Arc-factored Models

Arc Features: f(i,j, k)

PP

John saw Mary McGuire yesterday with his telescope

N V N N R P PR N

» Features from [McDonald et al. 2005]:
> ldentities of the words w; and w; and the label /;

head=saw & dependent=with

Introduction to Data-Driven Dependency Parsing 35(63)

Arc-factored Models

Arc Features: f(i,j, k)

PP

John saw Mary McGuire yesterday with his telescope

N V N N R P PR N

» Features from [McDonald et al. 2005]:
» Part-of-speech tags of the words w; and w; and the label I,

head-pos=Verb & dependent-pos=Preposition

Introduction to Data-Driven Dependency Parsing 36(63)

Arc-factored Models

Arc Features: f(i,j, k)

PP

John saw Mary McGuire yesterday with his telescope
N V N N R P PR N

» Features from [McDonald et al. 2005]:
» Part-of-speech of words surrounding and between w; and w;

inbetween-pos=Noun
inbetween-pos=Adverb
dependent-pos-right=Pronoun
head-pos-left=Noun

Introduction to Data-Driven Dependency Parsing 37(63)

Arc-factored Models

Arc Features: f(i,j, k)
PP

John saw Mary McGuire yesterday with his telescope
N V N N R P PR N

» Features from [McDonald et al. 2005]:
» Number of words between w; and w;, and their orientation

arc-distance=3
arc-direction=right

Introduction to Data-Driven Dependency Parsing 38(63)

Arc-factored Models

Arc Features: f(i,j, k)

PP

John saw Mary McGuire yesterday with his telescope
N V N N R P PR N

» Label features

arc-label=PP

Introduction to Data-Driven Dependency Parsing 39(63)

Arc-factored Models

Arc Features: f(i,, k)

PP

John saw Mary McGuire yesterday with his telescope

N V. N N R P PR N

» Combos of the above

head-pos=Verb & dependent-pos=Preposition & arc-label=PP
head-pos=Verb & dependent=with & arc-distance=3

» No limit: any feature over arc (i, , k) or input x

Introduction to Data-Driven Dependency Parsing 40(63)

Learning the parameters

» We can then re-write the inference problem

G = argmax wéf = argmax W-F(ijk)

GeT(Gy) (i.J,k)eG GeT(Gy) (i.J,k)EG

= argmax log H Wik
GET(Gy) (i,K)EG

= argmax Z w - f(i,j, k)
GET(Gy) (iJ,K)EG

= argmax w- Z f(i,j,k) = argmax w-f(G)
GET(Gx) (iJ,k)EG GeT(Gy)

» Which we can plug into online learning algorithms

Introduction to Data-Driven Dependency Parsing 41(63)

Arc-factored Models

Inference-based Learning

e.g., The Perceptron

Training data: 7 = {(x, Gt)}gll

1. w0 = 0;/i=0

2. forn:1.N

3. fort:1..T

4. Let G’ = argmaxg w() - f(G') (**)
5. if G' # G;

6. w(t) = wl) 1 £(G,) — f(G")

7. i=i+1

8. return w'

Introduction to Data-Driven Dependency Parsing 42(63)

Arc-factored Models

Other Important Problems

v

K-best inference — O(K x |L|n?) [Camerini et al. 1980]
Partition function

v

Z = Z w(G)

GET(Gx)

v

Arc expectations

(i k)x = > w(G)x 1[(i,j,]) € G]

GET(Gx)

v

Important for some learning & inference frameworks

v

Important for some applications

Introduction to Data-Driven Dependency Parsing 43(63)

Arc-factored Models

Partition Function: Z, =} ¢)w(G)

» Lapacian Matrix Q for graph Gy = (V4, Ax)

i), (i k) EA i), (i k) €A

» Cofactor Q' is the matrix @ with the it row and column
removed

The Matrix Tree Theorem [Tutte 1984]
The determinant of the cofactor Q° is equal to Zy

» Thus Z, = |Q°| — determinants can be calculated in O(n%)
» Constructing @ takes O(|L|n?)
» Therefore the whole process takes O(n3 + |L|n?)

Introduction to Data-Driven Dependency Parsing 44(63)

Arc-factored Models

Arc Expectations

(i k)= > w(G)x 1[(i,j, k) € Al

GET(Gx)

v

Can easily be calculated, first reset some weights

wi; =0Vi'#iand K # k

v

Now, (i,J, k)x = Zx
Why? All competing arc weights to zero, therefore every
non-zero weighted graph must contain (i, , k)

v

v

Naively takes O(n® + |L|n?) to compute all expectations

But can be calculated in O(n3 + |L|n?) (see
[McDonald and Satta 2007, Smith and Smith 2007, Koo et al. 2007])

Introduction to Data-Driven Dependency Parsing 45(63)

v

Arc-factored Models

Z, for the Projective Case

» Just augment chart-parsing algorithm

> Weight of new item: >, ., w(A) x w(B) x W
» Weight of item rooted at 0 spanning 0 to n is equal to Z,
» Also works for Eisner's algorithim — runtime O(n® + |L|n?)

Introduction to Data-Driven Dependency Parsing 46(63)

Arc-factored Models

(i,j, k) for the Projective Case

» Can be calculated through Z,, just like the non-projective case
» Can also be calculated using the inside-outside algorithm

» See [Paskin 2001] for more details

Introduction to Data-Driven Dependency Parsing 47(63)

Arc-factored Models

Why calculate Z, and (i, j, k),?

» Useful for many learning and inference problems
» Min risk-decoding ({/,/, k)x)
» Log-linear parsing models (Z, and (i}, k)x)
» Syntactic language modeling (Z)
» Unsupervised dependency parsing (Z, and (i, J, k)x)
>

» See [McDonald and Satta 2007] for more

Introduction to Data-Driven Dependency Parsing 48(63)

Beyond Arc-factored Models

Beyond Arc-factored Models

» Arc-factored models make strong independence assumptions
» Can we do better?

» Rest of lecture

» NP-hardness of Markovization for non-projective parsing
» But ... projective case has polynomial solutions!!
» Approximate non-projective algorithms

Introduction to Data-Driven Dependency Parsing 49(63)

Beyond Arc-factored Models

Vertical and Horizontal Markovization

» Dependency graphs weight factors over neighbouring arcs

» Vertical versus Horizontal neighbourhoods

root

ROOT
> will
SBJ "

Horizontal

VC
period

Tomash remain

NMOD

director
oD,

Introduction to Data-Driven Dependency Parsing 50(63)

Beyond Arc-factored Models

Nt Order Horizontal Markov Factorization

» Assume the unlabeled parsing case (adding labels is easy)
» Weights factor over neighbourhoods of size N

X4, oo SEij CIZZ']._,’_l ZI;

m

» Normal (arc-factored = first-order)

m
[woi
k=1

» Second-order — weights over pairs of adjacent (same side) arcs

j—1 m—1
H Wigiirer X Wig-i; X Wig-jq X H Wigikiy+1
k=1 k=j+1

Introduction to Data-Driven Dependency Parsing 51(63)

Beyond Arc-factored Models

Non-projective Horizontal Markovization

» Non-projective second-order parsing is NP-hard
» Thus any order non-projective parsing is NP-hard

» 3-dimensional matching (3DM): Disjoint sets X, Y, Z each
with m elements. Aset T C X x Y x Z. Question — is there
asubset S C T such that [S|=mandeachve XUYUZ
occurs in exactly one element of S

» Reduction: Define G, = (Vx, Ax) as a dense graph, where

Ve={v|V¥,veXUYUZU{0}

Woxix; = 1, Vxj, x; € X

Wy, =1, ¥xeX,yeY

Wyyze = 1, V(x,y,2) € T

All other weights are 0

Introduction to Data-Driven Dependency Parsing 52(63)

vV VY vV VY

Beyond Arc-factored Models

Non-projective Horizontal Markovization

» Non-projective second-order parsing is NP-hard

» Generate sentence from all x € X, y € Yandze Z

/

root x0 ... Xi..Xj..xm y0..yi..yj..ym z0...zi..z..zm

weight =1

Introduction to Data-Driven Dependency Parsing 53(63)

Beyond Arc-factored Models

Non-projective Horizontal Markovization

» Non-projective second-order parsing is NP-hard

weight =1

root X0 ...Xi..Xj..xm y0..yi..yj..ym z0..zi..z..zm

Introduction to Data-Driven Dependency Parsing 54(63)

Beyond Arc-factored Models

Non-projective Horizontal Markovization

» Non-projective second-order parsing is NP-hard

weight =1

root X0 ...Xi..Xj..xm y0..yi..yj..ym z0..zi..z..zm

Introduction to Data-Driven Dependency Parsing 55(63)

Beyond Arc-factored Models

Non-projective Horizontal Markovization

» Non-projective second-order parsing is NP-hard

weight =1

root X0 ...Xi...Xj..xm y0..yi..yj..ym z0..zi..z..zm

» All other arc weights are set to 0

Introduction to Data-Driven Dependency Parsing 56(63)

Beyond Arc-factored Models

Non-projective Horizontal Markovization

» Theorem: There is a 3DM iff there is a dependency graph of
weight 1
» Proof:
» All non-zero weight dependency graphs correspond to a 3DM
» Every 3DM corresponds to a non-zero weight dependency

graph

» Therefore, there is a non-zero weight dependency graph iff
then there is a 3DM

» See [McDonald and Pereira 2006] for more

Introduction to Data-Driven Dependency Parsing 57(63)

Beyond Arc-factored Models

Projective Horizontal Markovization

» Can simply augment chart parsing algorithm

» Same for the Eisner algorithm — runtime still O(|L|n%)

k
/\
a, hb C W, a, hc
_A A multiply through
[¢ i new weight
. >
/\
a b, h, c W,
a
A A | |
i ¢+ j

Introduction to Data-Driven Dependency Parsing 58(63)

Beyond Arc-factored Models

Approx Non-proj Horizontal Markovization

» Two properties:
» Projective parsing is polynomial w/ horizontal Markovization
» Most non-projective graphs are still primarily projective

» Use these facts to get an approximate non-projective
algorithm
» Find a high scoring projective parse
» lteratively modify to create a higher scoring non-projective
parse
» Post-process non-projectivity, which is related to
pseudo-projective parsing

Introduction to Data-Driven Dependency Parsing 59(63)

Beyond Arc-factored Models

Approx Non-proj Horizontal Markovization

» Algorithm

1. Let G be the highest weighted projective graph
2. Find the arc (i,j, k) € G, a node i’ and label lx such that

» G =GU{(/",j,k)} —{(i,j, k)} is a valid graph (tree)
» G’ has highest weight of all possibly changes
3. if w(G’) > w(G) then G = G’ and return to step 2
4. Otherwise return G
» Intuition: Start with a high weighted graph and make local
changes that increase the graphs weight until convergence

» Works well in practice [McDonald and Pereira 2006]

Introduction to Data-Driven Dependency Parsing 60(63)

Beyond Arc-factored Models

Vertical Markovization

» Also NP-hard for non-projective case [McDonald and Satta 2007]

» Reduction again from 3DM
» A little more complicated — relies on arc labels

» Projective case is again polynomial
» Same method of augmenting the chart-parsing algorithm

Introduction to Data-Driven Dependency Parsing 61(63)

Beyond Arc-factored Models

Beyond Arc-Factorization

» For the non-projective case, increasing scope of weights (and
as a result features) makes parsing intractable

» However, chart parsing nature of projective algorithms allows
for simple augmentations

» Can approximate the non-projective case using the exact
projective algorithms plus a post-process optimization

» Further reading:
[McDonald and Pereira 2006, McDonald and Satta 2007]

Introduction to Data-Driven Dependency Parsing 62(63)

Summary

Summary — Graph-based Methods

» Arc-factored models

» Maximum spanning tree formulation
» Projective and non-projective inference algorithms
» Partition function and arc expectation algorithms — Matrix
Tree Theorem
» Beyond Arc-factored Models

» Vertical and horizontal markovization
» Approximations

Introduction to Data-Driven Dependency Parsing 63(63)

References and Further Reading

References and Further Reading

» P. M. Camerini, L. Fratta, and F. Maffioli. 1980.
The k best spanning arborescences of a network. Networks, 10(2):91-110.

» Y.J. Chu and T.H. Liu. 1965.
On the shortest arborescence of a directed graph. Science Sinica, 14:1396—-1400.

» J. Edmonds. 1967.
Optimum branchings. Journal of Research of the National Bureau of Standards,
71B:233-240.

» J. Eisner. 1996.
Three new probabilistic models for dependency parsing: An exploration. In Proc.
COLING.

> T. Koo, A. Globerson, X. Carreras, and M. Collins. 2007.
Structured prediction models via the matrix-tree theorem. In Proc. EMNLP.

> R. McDonald and F. Pereira. 2006.
Online learning of approximate dependency parsing algorithms. In Proc EACL.

» R. McDonald and G. Satta. 2007.
On the complexity of non-projective data-driven dependency parsing. In Proc.
IWPT.

» R. McDonald, K. Crammer, and F. Pereira. 2005.

Introduction to Data-Driven Dependency Parsing 63(63)

References and Further Reading

Online large-margin training of dependency parsers. In Proc. ACL.

» M.A. Paskin. 2001.
Cubic-time parsing and learning algorithms for grammatical bigram models.
Technical Report UCB/CSD-01-1148, Computer Science Division, University of
California Berkeley.

» D.A. Smith and N.A. Smith. 2007.
Probabilistic models of nonprojective dependency trees. In Proc. EMNLP.

» R.E. Tarjan. 1977.
Finding optimum branchings. Networks, 7:25-35.

> W.T. Tutte. 1984.
Graph Theory. Cambridge University Press.

Introduction to Data-Driven Dependency Par: 63(63)

	Introduction
	Graph Theory Refresher
	Arc-factored Models
	Beyond Arc-factored Models
	Summary
	Appendix
	References and Further Reading

