
Introduction to Data-Driven
Dependency Parsing

Introductory Course, ESSLLI 2007

Ryan McDonald1 Joakim Nivre2

1Google Inc., New York, USA
E-mail: ryanmcd@google.com

2Uppsala University and Växjö University, Sweden
E-mail: nivre@msi.vxu.se

Introduction to Data-Driven Dependency Parsing 1(63)

Introduction

Overview of the Course

I Dependency parsing (Joakim)

I Machine learning methods (Ryan)

I Transition-based models (Joakim)

I Graph-based models (Ryan)
I Loose ends (Joakim, Ryan):

I Other approaches
I Empirical results
I Available software

Introduction to Data-Driven Dependency Parsing 2(63)

Introduction

Notation Reminder

I Sentence x = w0,w1, . . . ,wn, with w0 = root

I L = {l1, . . . , l|L|} set of permissible arc labels

I Let G = (V ,A) be a dependency graph for sentence x where:
I V = {0, 1, . . . , n} is the vertex set
I A is the arc set, i.e., (i , j , k) ∈ A represents a dependency from

wi to wj with label lk ∈ L

I By the usual definition, G is a tree

Introduction to Data-Driven Dependency Parsing 3(63)

Introduction

Data-Driven Parsing

I Goal: Learn a good predictor of dependency graphs

I Input: x

I Output: dependency graph/tree G
I Last lecture:

I Parameterize parsing by transitions
I Learn to predict transitions given the input and a history
I Predict new graphs using deterministic parsing algorithm

I This lecture:
I Parameterize parsing by dependency arcs
I Learn to predict entire graphs given the input
I Predict new graphs using spanning tree algorithms

Introduction to Data-Driven Dependency Parsing 4(63)

Introduction

Lecture 4: Outline

I Graph theory refresher
I Arc-factored models (a.k.a. Edge-factored models)

I Maximum spanning tree formulation
I Projective and non-projective inference algorithms
I Partition function and marginal algorithms – Matrix Tree

Theorem

I Beyond Arc-factored Models
I Vertical and horizontal markovization
I Approximations

Introduction to Data-Driven Dependency Parsing 5(63)

Graph Theory Refresher

Some Graph Theory Reminders

I A graph G = (V ,A) is a set of verteces V and arcs (i , j) ∈ A,
where i , j ∈ V

I Undirected graphs: (i , j) ∈ A ⇔ (j , i) ∈ A
I Directed graphs (digraphs): (i , j) ∈ A ; (j , i) ∈ A

Introduction to Data-Driven Dependency Parsing 6(63)

Graph Theory Refresher

Multi-Digraphs

I A multi-digraph is a digraph where there can be multiple arcs
between verteces

I G = (V ,A)
I (i , j , k) ∈ A represents the kth arc from vertex i to vertex j

Introduction to Data-Driven Dependency Parsing 7(63)

Graph Theory Refresher

Directed Spanning Trees (a.k.a. Arborescence)

I A directed spanning tree of a (multi-)digraph G = (V ,A), is a
subgraph G ′ = (V ′,A′) such that:

I V ′ = V
I A′ ⊆ A, and |A′| = |V ′| − 1
I G ′ is a tree (acyclic)

I A spanning tree of the following (multi-)digraphs

Introduction to Data-Driven Dependency Parsing 8(63)

Graph Theory Refresher

Weighted Directed Spanning Trees

I Assume we have a weight function for each arc in a
multi-digraph G = (V ,A)

I Define wk
ij ≥ 0 to be the weight of (i , j , k) ∈ A for a

multi-digraph

I Define the weight of directed spanning tree G ′ of graph G as

w(G ′) =
∏

(i ,j ,k)∈G ′

wk
ij

I Notation: (i , j , k) ∈ G = (V ,A) ⇔ the arc (i , j , k) ∈ A

Introduction to Data-Driven Dependency Parsing 9(63)

Graph Theory Refresher

Maximum Spanning Trees (MST)
of (Multi-)Digraphs

I Let T (G) be the set of all spanning trees for graph G

I The MST Problem: Find the spanning tree G ′ of the graph G
that has highest weight

G ′ = arg max
G ′∈T (G)

w(G ′) = arg max
G ′∈T (G)

∏
(i ,j ,k)∈G ′

wk
ij

I Solutions ... to come.

Introduction to Data-Driven Dependency Parsing 10(63)

Arc-factored Models

Arc-Factored Dependency Models

I Remember: Data-driven parsing parameterizes model and
then learns parameters from data

I Arc-factored model
I Assumes that the score / probability / weight of a dependency

graph factors by its arcs

w(G) =
∏

(i,j,k)∈G

wk
ij look familiar?

I wk
ij is the weight of creating a dependency from word wi to wj

with label lk

I Thus there is an assumption that each dependency decision is
independent

I Strong assumption! Will address this later.

Introduction to Data-Driven Dependency Parsing 11(63)

Arc-factored Models

Arc-Factored Dependency Models Example

I Weight of dependency graph is 10× 30× 30 = 9000

I In practice arc weights are much smaller

Introduction to Data-Driven Dependency Parsing 12(63)

Arc-factored Models

Important Concept Gx

I For input sentence x = w0, . . . ,wn, define Gx = (Vx ,Ax) as:
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | ∀ i , j ∈ Vx and lk ∈ L}

I Thus, Gx is complete multi-digraph over vertex set
representing words

Theorem
Every valid dependency graph for sentence x is equivalent to a
directed spanning tree for Gx that originates out of vertex 0

I Falls out of definitions of tree constrained dependency graphs
and spanning trees

I Both are spanning/connected (contain all words)
I Both are trees

Introduction to Data-Driven Dependency Parsing 13(63)

Arc-factored Models

Three Important Problems

Theorem
Every valid dependency graph for sentence x is equivalent to a
directed spanning tree for Gx that originates out of vertex 0

1. Inference ≡ finding the MST of Gx

G = arg max
G∈T (Gx)

w(G) = arg max
G∈T (Gx)

∏
(i ,j ,k)∈G

wk
ij

2. Defining wk
ij and its feature space

3. Learning wk
ij

I Can use perceptron-based learning if we solve (1)

Introduction to Data-Driven Dependency Parsing 14(63)

Arc-factored Models

Inference - Getting Rid of Arc Labels

G = arg max
G∈T (Gx)

w(G) = arg max
G∈T (Gx)

∏
(i ,j ,k)∈G

wk
ij

I Consider all the arcs between vertexes i and j

I Now, consider the arc (i , j , k) such that,

(i , j , k) = arg max
k

wk
ij

Theorem
The highest weighted dependency tree for sentence x must contain

the arc (i , j , k) – (assuming no ties)

I Easy proof: if not, sub in (i , j , k) and get higher weighted tree

Introduction to Data-Driven Dependency Parsing 15(63)

Arc-factored Models

Inference - Getting Rid of Arc Labels

G = arg max
G∈T (Gx)

w(G) = arg max
G∈T (Gx)

∏
(i ,j ,k)∈G

wk
ij

I Thus, we can reduce Gx from a multi-digraph to a simple
digraph

I Just remove all arcs that do not satisfy

(i , j , k) = arg max
k

wk
ij

I Problem is now equal to the MST problem for digraphs

We will use the Chu-Liu-Edmonds Algorithm
[Chu and Liu 1965, Edmonds 1967]

Introduction to Data-Driven Dependency Parsing 16(63)

Arc-factored Models

Chu-Liu-Edmonds Algorithm

I Finds the MST originating out of a vertex of choice
I Assumes weight of tree is sum of arc weights
I No problem, we can use logarithms

G = arg max
G∈T (Gx)

∏
(i ,j ,k)∈G

wk
ij

= arg max
G∈T (Gx)

log
∏

(i ,j ,k)∈G

wk
ij

= arg max
G∈T (Gx)

∑
(i ,j ,k)∈G

log wk
ij

So if we let wk
ij = log wk

ij , then we get

G = arg max
G∈T (Gx)

∑
(i ,j ,k)∈G

wk
ij

Introduction to Data-Driven Dependency Parsing 17(63)

Arc-factored Models

Chu-Liu-Edmonds

I x = root John saw Mary

Introduction to Data-Driven Dependency Parsing 18(63)

Arc-factored Models

Chu-Liu-Edmonds

I Find highest scoring incoming arc for each vertex

I If this is a tree, then we have found MST!!

Introduction to Data-Driven Dependency Parsing 19(63)

Arc-factored Models

Chu-Liu-Edmonds

I If not a tree, identify cycle and contract

I Recalculate arc weights into and out-of cycle

Introduction to Data-Driven Dependency Parsing 20(63)

Arc-factored Models

Chu-Liu-Edmonds

I Outgoing arc weights
I Equal to the max of outgoing arc over all vertexes in cycle
I e.g., John → Mary is 3 and saw → Mary is 30

Introduction to Data-Driven Dependency Parsing 21(63)

Arc-factored Models

Chu-Liu-Edmonds

I Incoming arc weights
I Equal to the weight of best spanning tree that includes head of

incoming arc, and all nodes in cycle
I root → saw → John is 40 (**)
I root → John → saw is 29

Introduction to Data-Driven Dependency Parsing 22(63)

Arc-factored Models

Chu-Liu-Edmonds

Theorem
The weight of the MST of this contracted graph is equal to the

weight of the MST for the original graph

I Therefore, recursively call algorithm on new graph

Introduction to Data-Driven Dependency Parsing 23(63)

Arc-factored Models

Chu-Liu-Edmonds

I This is a tree and the MST for the contracted graph!!

I Go back up recursive call and reconstruct final graph

Introduction to Data-Driven Dependency Parsing 24(63)

Arc-factored Models

Chu-Liu-Edmonds

I This is the MST!!

Introduction to Data-Driven Dependency Parsing 25(63)

Arc-factored Models

Chu-Liu-Edmonds Code

Chu-Liu-Edmonds(Gx , w)
1. Let M = {(i∗, j) : j ∈ Vx , i∗ = arg maxi′ wij}
2. Let GM = (Vx , M)
3. If GM has no cycles, then it is an MST: return GM

4. Otherwise, find a cycle C in GM

5. Let < GC , c, ma >= contract(G , C , w)
6. Let G = Chu-Liu-Edmonds(GC , w)
7. Find vertex i ∈ C such that (i ′, c) ∈ G and ma(i ′, c) = i
8. Find arc (i ′′, i) ∈ C
9. Find all arc (c, i ′′′) ∈ G

10. G = G ∪ {(ma(c, i ′′′), i ′′′)}∀(c,i′′′)∈G ∪ C ∪ {(i ′, i)} − {(i ′′, i)}
11. Remove all vertices and arcs in G containing c
12. return G

I Reminder: wij = arg maxk wk
ij

Introduction to Data-Driven Dependency Parsing 26(63)

Arc-factored Models

Chu-Liu-Edmonds Code (II)

contract(G = (V , A), C , w)
1. Let GC be the subgraph of G excluding nodes in C
2. Add a node c to GC representing cycle C
3. For i ∈ V − C : ∃i′∈C (i ′, i) ∈ A

Add arc (c, i) to GC with
ma(c, i) = arg maxi′∈C score(i ′, i)
i ′ = ma(c, i)
score(c, i) = score(i ′, i)

4. For i ∈ V − C : ∃i′∈C (i , i ′) ∈ A
Add edge (i , c) to GC with

ma(i , c) = arg maxi′∈C [score(i , i ′) − score(a(i ′), i ′)]
i ′ = ma(i , c)
score(i , c) = [score(i , i ′) − score(a(i ′), i ′) + score(C)]

where a(v) is the predecessor of v in C
and score(C) =

P
v∈C score(a(v), v)

5. return < GC , c, ma >

Introduction to Data-Driven Dependency Parsing 27(63)

Arc-factored Models

Chu-Liu-Edmonds

I Naive implementation O(n3 + |L|n2)
I Converting Gx to a digraph – O(|L|n2)
I Finding best arc – O(n2)
I Contracting cycles – O(n2)
I At most n recursive calls

I Better algorithms run in O(|L|n2) [Tarjan 1977]

I Chu-Liu-Edmonds searches all dependency graphs
I Both projective and non-projective
I Thus, it is an exact non-projective search algorithm!!!

I What about the projective case?

Introduction to Data-Driven Dependency Parsing 28(63)

Arc-factored Models

Arc-factored Projective Parsing

I Projective dependency structures are nested
I Can use CFG like parsing algorithms – chart parsing
I Each chart item (triangle) represents the weight of the best

tree rooted at word h spanning all the words from i to j
I Analog in CFG parsing: items represent best tree rooted at

non-terminal NT spanning words i to j

I Goal: Find chart item rooted at 0 spanning 0 to n

Base case
Length 1, h = i = j , has weight 1

Introduction to Data-Driven Dependency Parsing 29(63)

Arc-factored Models

Arc-factored Projective Parsing

I All projective graphs can be written as the combination of two
smaller adjacent graphs

I Inductive hypothesis – algorithm has calculated score of
smaller items correctly (just like CKY)

Introduction to Data-Driven Dependency Parsing 30(63)

Arc-factored Models

Arc-factored Projective Parsing

I Chart item filled in a bottom-up manner
I First do all strings of length 1, then 2, etc. just like CKY

I Weight of new item: maxl ,j ,k w(A)× w(B)× wk
hh′

I Algorithm runs in O(|L|n5)
I Use back-pointers to extract best parse (like CKY)

Introduction to Data-Driven Dependency Parsing 31(63)

Arc-factored Models

Arc-factored Projective Parsing

I O(|L|n5) is not that good
I [Eisner 1996] showed how this can be reduced to O(|L|n3)

I Key: split items so that sub-roots are always on periphery

Introduction to Data-Driven Dependency Parsing 32(63)

Arc-factored Models

Inference in Arc-Factored Models

I Non-projective case
I O(|L|n2) with the Chu-Liu-Edmonds MST algorithm

I Projective case
I O(|L|n3) with the Eisner algorithm

I But we still haven’t defined the form of wk
ij

I Or how to learn these parameters

Introduction to Data-Driven Dependency Parsing 33(63)

Arc-factored Models

Arc weights as linear classifiers

wk
ij = ew·f(i ,j ,k)

I Arc weights are a linear combination of features of the arc, f,
and a corresponding weight vector w

I Raised to an exponent (simplifies some math ...)

I What arc features?

I [McDonald et al. 2005] discuss a number of binary features

Introduction to Data-Driven Dependency Parsing 34(63)

Arc-factored Models

Arc Features: f(i , j , k)

I Features from [McDonald et al. 2005]:
I Identities of the words wi and wj and the label lk

head=saw & dependent=with

Introduction to Data-Driven Dependency Parsing 35(63)

Arc-factored Models

Arc Features: f(i , j , k)

I Features from [McDonald et al. 2005]:
I Part-of-speech tags of the words wi and wj and the label lk

head-pos=Verb & dependent-pos=Preposition

Introduction to Data-Driven Dependency Parsing 36(63)

Arc-factored Models

Arc Features: f(i , j , k)

I Features from [McDonald et al. 2005]:
I Part-of-speech of words surrounding and between wi and wj

inbetween-pos=Noun
inbetween-pos=Adverb

dependent-pos-right=Pronoun
head-pos-left=Noun

...

Introduction to Data-Driven Dependency Parsing 37(63)

Arc-factored Models

Arc Features: f(i , j , k)

I Features from [McDonald et al. 2005]:
I Number of words between wi and wj , and their orientation

arc-distance=3
arc-direction=right

Introduction to Data-Driven Dependency Parsing 38(63)

Arc-factored Models

Arc Features: f(i , j , k)

I Label features

arc-label=PP

Introduction to Data-Driven Dependency Parsing 39(63)

Arc-factored Models

Arc Features: f(i , j , k)

I Combos of the above

head-pos=Verb & dependent-pos=Preposition & arc-label=PP
head-pos=Verb & dependent=with & arc-distance=3

...

I No limit: any feature over arc (i , j , k) or input x

Introduction to Data-Driven Dependency Parsing 40(63)

Arc-factored Models

Learning the parameters

I We can then re-write the inference problem

G = arg max
G∈T (Gx)

∏
(i,j,k)∈G

wk
ij = arg max

G∈T (Gx)

∏
(i,j,k)∈G

ew·f(i,j,k)

= arg max
G∈T (Gx)

log
∏

(i,j,k)∈G

ew·f(i,j,k)

= arg max
G∈T (Gx)

∑
(i,j,k)∈G

w · f(i , j , k)

= arg max
G∈T (Gx)

w ·
∑

(i,j,k)∈G

f(i , j , k) = arg max
G∈T (Gx)

w · f(G)

I Which we can plug into online learning algorithms

Introduction to Data-Driven Dependency Parsing 41(63)

Arc-factored Models

Inference-based Learning

e.g., The Perceptron

Training data: T = {(xt ,Gt)}|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let G ′ = arg maxG ′ w(i) · f(G ′) (**)
5. if G ′ 6= Gt

6. w(i+1) = w(i) + f(Gt)− f(G ′)
7. i = i + 1
8. return wi

Introduction to Data-Driven Dependency Parsing 42(63)

Arc-factored Models

Other Important Problems

I K -best inference – O(K × |L|n2) [Camerini et al. 1980]

I Partition function

Zx =
∑

G∈T (Gx)

w(G)

I Arc expectations

〈i , j , k〉x =
∑

G∈T (Gx)

w(G)× 1[(i , j , l) ∈ G]

I Important for some learning & inference frameworks

I Important for some applications

Introduction to Data-Driven Dependency Parsing 43(63)

Arc-factored Models

Partition Function: Zx =
∑

G∈T (Gx)
w(G)

I Lapacian Matrix Q for graph Gx = (Vx ,Ax)

Qjj =
∑

i 6=j ,(i ,j ,k)∈Ax

wk
ij and Qij =

∑
i 6=j ,(i ,j ,k)∈Ax

−wk
ij

I Cofactor Q i is the matrix Q with the i th row and column
removed

The Matrix Tree Theorem [Tutte 1984]

The determinant of the cofactor Q0 is equal to Zx

I Thus Zx = |Q0| – determinants can be calculated in O(n3)

I Constructing Q takes O(|L|n2)

I Therefore the whole process takes O(n3 + |L|n2)

Introduction to Data-Driven Dependency Parsing 44(63)

Arc-factored Models

Arc Expectations

〈i , j , k〉x =
∑

G∈T (Gx)

w(G)× 1[(i , j , k) ∈ A]

I Can easily be calculated, first reset some weights

wk′
i ′j = 0 ∀i ′ 6= i and k ′ 6= k

I Now, 〈i , j , k〉x = Zx

I Why? All competing arc weights to zero, therefore every
non-zero weighted graph must contain (i , j , k)

I Naively takes O(n5 + |L|n2) to compute all expectations

I But can be calculated in O(n3 + |L|n2) (see
[McDonald and Satta 2007, Smith and Smith 2007, Koo et al. 2007])

Introduction to Data-Driven Dependency Parsing 45(63)

Arc-factored Models

Zx for the Projective Case

I Just augment chart-parsing algorithm

I Weight of new item:
∑

l ,j ,k w(A)× w(B)× wk
hh′

I Weight of item rooted at 0 spanning 0 to n is equal to Zx

I Also works for Eisner’s algorithim – runtime O(n3 + |L|n2)

Introduction to Data-Driven Dependency Parsing 46(63)

Arc-factored Models

〈i , j , k〉x for the Projective Case

I Can be calculated through Zx , just like the non-projective case

I Can also be calculated using the inside-outside algorithm

I See [Paskin 2001] for more details

Introduction to Data-Driven Dependency Parsing 47(63)

Arc-factored Models

Why calculate Zx and 〈i , j , k〉x?

I Useful for many learning and inference problems
I Min risk-decoding (〈i , j , k〉x)
I Log-linear parsing models (Zx and 〈i , j , k〉x)
I Syntactic language modeling (Zx)
I Unsupervised dependency parsing (Zx and 〈i , j , k〉x)
I ...

I See [McDonald and Satta 2007] for more

Introduction to Data-Driven Dependency Parsing 48(63)

Beyond Arc-factored Models

Beyond Arc-factored Models

I Arc-factored models make strong independence assumptions

I Can we do better?
I Rest of lecture

I NP-hardness of Markovization for non-projective parsing
I But ... projective case has polynomial solutions!!
I Approximate non-projective algorithms

Introduction to Data-Driven Dependency Parsing 49(63)

Beyond Arc-factored Models

Vertical and Horizontal Markovization

I Dependency graphs weight factors over neighbouring arcs

I Vertical versus Horizontal neighbourhoods

Introduction to Data-Driven Dependency Parsing 50(63)

Beyond Arc-factored Models

N th Order Horizontal Markov Factorization

I Assume the unlabeled parsing case (adding labels is easy)

I Weights factor over neighbourhoods of size N

I Normal (arc-factored = first-order)

m∏
k=1

wi0ik

I Second-order – weights over pairs of adjacent (same side) arcs

j−1∏
k=1

wi0ik ik+1
× wi0·ij × wi0·ij+1

×
m−1∏

k=j+1

wi0ik ik+1

Introduction to Data-Driven Dependency Parsing 51(63)

Beyond Arc-factored Models

Non-projective Horizontal Markovization

I Non-projective second-order parsing is NP-hard
I Thus any order non-projective parsing is NP-hard

I 3-dimensional matching (3DM): Disjoint sets X ,Y ,Z each
with m elements. A set T ⊆ X × Y × Z . Question – is there
a subset S ⊆ T such that |S | = m and each v ∈ X ∪ Y ∪ Z
occurs in exactly one element of S

I Reduction: Define Gx = (Vx ,Ax) as a dense graph, where
I Vx = {v | ∀, v ∈ X ∪ Y ∪ Z} ∪ {0}
I w0xixj = 1, ∀xi , xj ∈ X
I wx·y = 1, ∀x ∈ X , y ∈ Y
I wxiyjzk = 1, ∀(x , y , z) ∈ T
I All other weights are 0

Introduction to Data-Driven Dependency Parsing 52(63)

Beyond Arc-factored Models

Non-projective Horizontal Markovization

I Non-projective second-order parsing is NP-hard

I Generate sentence from all x ∈ X , y ∈ Y and z ∈ Z

Introduction to Data-Driven Dependency Parsing 53(63)

Beyond Arc-factored Models

Non-projective Horizontal Markovization

I Non-projective second-order parsing is NP-hard

Introduction to Data-Driven Dependency Parsing 54(63)

Beyond Arc-factored Models

Non-projective Horizontal Markovization

I Non-projective second-order parsing is NP-hard

Introduction to Data-Driven Dependency Parsing 55(63)

Beyond Arc-factored Models

Non-projective Horizontal Markovization

I Non-projective second-order parsing is NP-hard

I All other arc weights are set to 0

Introduction to Data-Driven Dependency Parsing 56(63)

Beyond Arc-factored Models

Non-projective Horizontal Markovization

I Theorem: There is a 3DM iff there is a dependency graph of
weight 1

I Proof:
I All non-zero weight dependency graphs correspond to a 3DM
I Every 3DM corresponds to a non-zero weight dependency

graph
I Therefore, there is a non-zero weight dependency graph iff

then there is a 3DM
I See [McDonald and Pereira 2006] for more

Introduction to Data-Driven Dependency Parsing 57(63)

Beyond Arc-factored Models

Projective Horizontal Markovization

I Can simply augment chart parsing algorithm

I Same for the Eisner algorithm – runtime still O(|L|n3)

Introduction to Data-Driven Dependency Parsing 58(63)

Beyond Arc-factored Models

Approx Non-proj Horizontal Markovization

I Two properties:
I Projective parsing is polynomial w/ horizontal Markovization
I Most non-projective graphs are still primarily projective

I Use these facts to get an approximate non-projective
algorithm

I Find a high scoring projective parse
I Iteratively modify to create a higher scoring non-projective

parse
I Post-process non-projectivity, which is related to

pseudo-projective parsing

Introduction to Data-Driven Dependency Parsing 59(63)

Beyond Arc-factored Models

Approx Non-proj Horizontal Markovization

I Algorithm
1. Let G be the highest weighted projective graph
2. Find the arc (i , j , k) ∈ G , a node i ′ and label lk′ such that

I G ′ = G ∪ {(i ′, j , k ′)} − {(i , j , k)} is a valid graph (tree)
I G ′ has highest weight of all possibly changes

3. if w(G ′) > w(G) then G = G ′ and return to step 2
4. Otherwise return G

I Intuition: Start with a high weighted graph and make local
changes that increase the graphs weight until convergence

I Works well in practice [McDonald and Pereira 2006]

Introduction to Data-Driven Dependency Parsing 60(63)

Beyond Arc-factored Models

Vertical Markovization

I Also NP-hard for non-projective case [McDonald and Satta 2007]

I Reduction again from 3DM
I A little more complicated – relies on arc labels

I Projective case is again polynomial
I Same method of augmenting the chart-parsing algorithm

Introduction to Data-Driven Dependency Parsing 61(63)

Beyond Arc-factored Models

Beyond Arc-Factorization

I For the non-projective case, increasing scope of weights (and
as a result features) makes parsing intractable

I However, chart parsing nature of projective algorithms allows
for simple augmentations

I Can approximate the non-projective case using the exact
projective algorithms plus a post-process optimization

I Further reading:
[McDonald and Pereira 2006, McDonald and Satta 2007]

Introduction to Data-Driven Dependency Parsing 62(63)

Summary

Summary – Graph-based Methods

I Arc-factored models
I Maximum spanning tree formulation
I Projective and non-projective inference algorithms
I Partition function and arc expectation algorithms – Matrix

Tree Theorem

I Beyond Arc-factored Models
I Vertical and horizontal markovization
I Approximations

Introduction to Data-Driven Dependency Parsing 63(63)

References and Further Reading

References and Further Reading

I P. M. Camerini, L. Fratta, and F. Maffioli. 1980.
The k best spanning arborescences of a network. Networks, 10(2):91–110.

I Y.J. Chu and T.H. Liu. 1965.
On the shortest arborescence of a directed graph. Science Sinica, 14:1396–1400.

I J. Edmonds. 1967.
Optimum branchings. Journal of Research of the National Bureau of Standards,
71B:233–240.

I J. Eisner. 1996.
Three new probabilistic models for dependency parsing: An exploration. In Proc.
COLING.

I T. Koo, A. Globerson, X. Carreras, and M. Collins. 2007.
Structured prediction models via the matrix-tree theorem. In Proc. EMNLP.

I R. McDonald and F. Pereira. 2006.
Online learning of approximate dependency parsing algorithms. In Proc EACL.

I R. McDonald and G. Satta. 2007.
On the complexity of non-projective data-driven dependency parsing. In Proc.
IWPT.

I R. McDonald, K. Crammer, and F. Pereira. 2005.

Introduction to Data-Driven Dependency Parsing 63(63)

References and Further Reading

Online large-margin training of dependency parsers. In Proc. ACL.

I M.A. Paskin. 2001.
Cubic-time parsing and learning algorithms for grammatical bigram models.
Technical Report UCB/CSD-01-1148, Computer Science Division, University of
California Berkeley.

I D.A. Smith and N.A. Smith. 2007.
Probabilistic models of nonprojective dependency trees. In Proc. EMNLP.

I R.E. Tarjan. 1977.
Finding optimum branchings. Networks, 7:25–35.

I W.T. Tutte. 1984.
Graph Theory. Cambridge University Press.

Introduction to Data-Driven Dependency Parsing 63(63)

	Introduction
	Graph Theory Refresher
	Arc-factored Models
	Beyond Arc-factored Models
	Summary
	Appendix
	References and Further Reading

