
Time series
Data... over time.



Time series
A univariate series  is a sequence

 of  values in a domain .
A series is defined by:

Type: discrete, e.g., nucleotide bases,
or continuous, e.g., stock values in a
financial market

Sampling rate: How often values
are sampled, e.g., daily

Amplitude: Values sampled, e.g.,
value of the stock on a particular
day

A time series.
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Time series
A univariate series  is a sequence

 of  values in a domain 
. A series is defined by:

Seasonality: Series repeat (or
almost repeat) over time, e.g.,
temperature

Period: How much does it take for
the series to repeat itself, e.g., length
of a calendar year

A time series.
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Time series
A multivariate time series  generalizes
time series to multiple variables. Each
instance is comprised of multiple time
series, each representing a different
feature.

A multivariate time series, with a variable in red, one in
blue.
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Time series statistics
Mean. Expected value  of 

Variance. Variance of 

Trend: slope  of a linear model
modeling 

A time series, and its trend (in beige).
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Time series statistics
Interquantile ranges. 

Skewness: is the distribution

symmetric? 

Kurtosis: what is the probability

mass on the tails? 
Empirical distribution of a time series components, values
color-coded by density.
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Time series: local behaviors
Time series can be affected by:

Seasonality: the series has some repeated periodic behavior, e.g., temperatures fall
every winter

Trends: the series tends to have a monotonic behavior, with values
increasing/decreasing

We need to analyze time series on a local scale.
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Time series statistics: rolling statistics
Rolling indicates the act of extracting a series of consecutive subsequences of given
dimensionalities . Each subseries gives a different view on , and is thus
named window. Given a series of windows, we can now locally describe a time series!

Rolling mean

Rolling variance

...
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Time series statistics: sliding statistics
Unlike rolling statistics, which compute a statistic over a subseries of a given series,
sliding statistics slide a series  over a series , computing a statistic between the two. The
act of sliding a window through a function is called convolution.

Auto-covariance
How much does a component of a time series correlate with previous and future
components? Slides a series over itself, computing covariance between the two
components:

High autocovariances may indicate seasonality in the series.
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Time series: sliding statistics
Cross-correlation
Shifted pointwise correlation of the two series , measured as a sliding inner product:

For univariate time series, the inner product is simply a multiplication.
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From analyzing to transforming
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Representing by segmenting
Given a set of time series , let  be a set of  subseries . We
define an alphabet  of symbols, each symbol assigned to a subseries. Then, we can
segment each series into a sequence of subseries, and represent each time series as a
series of symbols in .

We can tackle two problems independently:

Segmentation: how to split a series into subseries?

Transformation: what symbols do we use to define each segment?
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Fixed window-based segmentation
Each series  has an often intractable number of
possible subseries, which makes exhaustive search
unfeasible. Instead, we choose an arbitrary window

, and segment each series into a set of 

subseries. A fixed window of size , segmenting a
time series in three non-overallping adjacent
windows (color-coded).
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Learned segmentation
We learn segmentations which minimizing an approximation error.

Piecewise Linear Approximation (PLA) defines a
segmentation minimizing segment-local linear
models of the data.

Given number of segments: segmentation
which distributes approximation error as
evenly as possible among segments

Given error bound: segmentation which
generates the minimum number of
segments within given error bound Segmentation on minimum error (top) and

given number of segments (bottom).
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Learned equidistributional windows
We learn segmentations by their likelihood: given a desired number of segments,
segments are learned to maximize their probability , which results in segments as
equiprobable as possible, ideally following a uniform distribution. By maximizing
probability, we maximize entropy, and thus the diversity of the subseries.
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Continuous transformations
Description Type

Piecewise Average (PA) Average value of the segment Continuous

Piecewise Linear (PL) Slope  of the segment Continuous

 given by storing both slope and intercept of the linear model. 15



Two-tier segmentations
Window segmentations create series of symbols themselves! We can learn
representations through a two-tier algorithm:

continuous transformation, yielding segments  with symbols in 

transformation partitioning, mapping symbols in  to discrete symbols in 

Symbols can be either categorical, or ordinal.
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Symbolic aggregate approximation (SAX)
Symbolic aggregate approximation (SAX) implements a two-tier transformation:

fixed-window segmentation followed by piecewise average transformation in
subsymbols 

aggregation of subsymbols into equiprobable symbols in : we partition the
subsymbol distribution into equiprobable buckets, each defined by a symbol in 

SAX symbols are discrete and ordinal!
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Symbolic aggregate approximation (SAX)

The three steps of SAX: subsymbol induction with fixed-window average segmentation, partitioning of the subsymbol
distribution, and transformation.
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Signal representations
Segmentations can be tricky to handle, and simply offer a representation in a domain
quite different from the original. Signal representations, on the other hand, aim to define
a series in terms of other series. To stick with the signal processing literature, where they
are most prevalent, we'll refer to series as signals.

What other signals can we leverage?

How do we combine them to represent the original series?

19



Fourier analysis
Fourier analysis tackles periodic (also
known as stationary) series, i.e., series
which periodically repeat themselves.

What other signals can we
leverage? Sine and cosine signals at
different frequencies

How do we combine them to
represent the original signal?
Linear combination

Two signals , and a linear combination
.
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Fourier analysis
As a linear transformation, we need to learn a set of coefficients  which map the basis to
the signal . In Fourier analysis, we constrain :

basis signals which do not contribute to the signal have a  coefficient

basis signals which do contribute do so with a positive coefficient 

To compute  we can thus use inner products, e.g., dot product, which are guaranteed to
satisfy both.
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The basis: sinusoids
First, we define the basis of the transformation. We use sinusoids, i.e., /  signals
defined by a phasor .

A phasor , and the  series generated.
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The basis: sinusoids
First, we define the basis of the transformation. We use sinusoids, i.e., /  signals
defined by a phasor .

A phasor , and the  series generated.
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Sinusoids define amplitude
For a phasor , we can define the period  as the time required for the phasor to
complete one rotation over the unit circle, and the frequency  as the rotations
per unit of time. Then, at time , the phasor defines a series component with amplitude

The shift  indicates the shift of the sinusoid itself with respect to . A nice interactive visualization here. 24

https://brianmcfee.net/dstbook-site/content/ch01-signals/Waves.html#id5


Sinusoids and the complex unit circle
By Euler, we can map complex numbers to
the complex unit circle.

The complex unit circle and an imaginary number 
. As in linear algebra, we can define a vector 
through the standard basis, in this case .
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Fourier, and the frequency domain
Phasors of different frequencies are the
building block of the Fourier
representation of the signal: we will map
signals to a frequency domain populated
by sinusoids of different frequencies.

Sinusoid signals of different frequencies define a basis in
the frequency domain. An interactive visualization can be
found here.
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https://brianmcfee.net/dstbook-site/content/ch01-signals/Waves.html#id5


Fourier, and the coefficients
Having defined a basis, we now need to learn the coefficients . Coefficients ought to
measure the presence of a frequency, and its scaling. Thus, , and  for
frequencies not present in . Inner products, e.g., dot products, satisfy both conditions:
the coefficients will be given by the inner product of basis signals and the signal :
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A small caveat: orthogonality... again?
Signals may be out orthogonally out of phase, thus inducing null products, leading to
misses on the basis. To tackle this, we use the orthogonal components of the basis: the 
component of the phasor!

Remember: by definition, inner product satisfy  for  orthogonal! 28



Discrete-Time Fourier Transform (DTFT)
Signals may be out orthogonally out of phase, thus inducing null products, leading to
misses on the basis. To tackle this, we use the orthogonal components of the basis: the 
component of the phasor!

Finally, we leverage Euler, and have

Remember: by definition, inner product satisfy  for  orthogonal! 29



Discrete-Time Fourier Transform
Quick: 

Decomposition in separate and
different signals

Decomposition defined exclusively
for sinusoidal series

Decomposition of periodic series

Decomposition exclusively in terms
of frequency, not time

30



Wavelets
Wavelet tackle several weaknesses of Fourier Transforms.

Fourier Transform: 

Decomposition defined
exclusively for sinusoidal series

Decomposition of periodic series

Decomposition exclusively in
terms of frequency, not time

Wavelets: 

Flexible decomposition defined
by mother wavelets

Decomposition of arbitrary
series

Wavelets parameterized in
frequency and time

31
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Wavelets
Wavelets (little waves) aim to replace sinusoidal phasors, and are both more general, and
flexible enough for domain-specific application. A wavelet  is a function s.t.

 (zero mean)

 (finite energy) or (compact support)

Finite energy makes it so a wavelet, unlike a sinusoidal function, is bounded: thus, by
construction, wavelets can be localized in time!

  
Three wavelets: Mexican Hat, Morlet, Meyer.
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Surfing the series with wavelets
Localization is innate in wavelets by their
own definition. A mother wavelet 
defines a family of daughter wavelets
defined by

A frequency : shrink or stretch the
daughter wavelet

A shift : pushes or pulls the
daughter wavelet across time.

We define a daughter wavelet  as

 

 

 
Stretched wavelets: Mexican Hat wavelet (left column), and
Meyer wavelet (right column).
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Wavelets Transforms
Moving from sinuoidal phasors to wavelets is seamless in the formulation

Wavelets are convoluted across the series, producing a list of coefficients.  and  are
dyadic, i.e., they are taken as powers of : .
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From representations to motifs
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Time series: motifs
Motifs tie strongly with subseries extraction for discretization: if representation
algorithms extracted to represent, and thus describe, motif extraction algorithms instead
extract subseries to represent, and thus discriminate. In other words, a motif is a
subseries characteristic of a set of series. We can search motifs following the two views:

descriptive: a motif is a reoccurring subseries in the set 

discriminative: a motif is a reoccurring subseries in the set ... and not reoccurring
in another set . Also called a shapelet
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Searching for Motifs
The first step is already solved! We know how to extract a set of subseries  from series
representation. We need to quantify the descriptive and discriminative power of
candidate motifs.

Descriptive power. Distance of  with respect to all possible subseries of  yields
distances . Descriptive power given by lower distances, e.g., 

Discriminative power. Comparison of descriptive power with respect to  and , e.g.,
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From motifs to shapelets
Since motifs are supposed to discriminate, why not directly measure their discriminative
power? Partition subseries in  according to their distance from a given candidate

 and a threshold , obtaining two sets . Then, compute a discrimination

measure, e.g., entropy, information gain, etc., on the two sets . The larger the

measure, the higher the discriminative power!

A shapelet (in black), a threshold , and the two sets  (left and right, in blue and red, respectively).
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Time series: alignment
An alignment  of two
time series  with components

 is an assignment
of each component  of  to a component

 of . An alignment  induces an
alignment cost  quantifying how
unaligned the two series are.

Two possible alignments (in beige) of an upper series  (in
red), and a lower series  (in blue).

We are going to assume equal time sampling for both series. 39



Alignment: local cost
Alignment costs  are based on two separate costs:

local (component-wise, or point-wise) alignment cost : defines the cost of

aligning  with . How much do I pay for this alignment?

match alignment cost : defines the cost of foregoing matching  with , in favor

of a lower-cost . How much would I pay for another alignment?

Alignment algorithms look to minimize a combined cost of the two.
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Alignment: straight match

A straight match alignment.
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Alignment: straight match
Trivial alignment: each point  is assigned to . The alignment induces a pairwise
alignment cost of . The alignment cost  is given by the sum of the

pairwise alignments:

Since  is always aligned with , it follows that . This produces an alignment

, only applicable for .

Applicable to series with the same sampling rate!
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Alignment: straight match

Two possible alignments of an upper series , and a lower series .

Simple definition

Minimizes norm cost

Quick: 

Only applicable to equal-length
series

Assumes alignment
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Alignment: Shifted match
Not all time series are already aligned! Given a component , we need to look for an
aligning , under a shift assumption.

Shifted alignment.
Assuming some subseries of either  are shifted, under a shifted alignment:

Warp, Replication. Each component  can be assigned to any component 

Planarity. Assignments are monotonic: a successive point cannot be assigned
backwards: 
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Alignment: Shifted match
If properly performed, a shifted match minimizes norm cost, and emulates a straight
alignment... with additional aligned components.

A shifted match alignment as a straight match alignment.

0:00 / 0:10
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Shifting as Warping

By warping, we replicate a component, warping it also further in the series. This allows
us to replicate components, and emulate a straight match.

no warp: the assignment  is attempted as is

lower warp: the assignment  is attempted on , replicating the
component on the lower series 

upper warp: the assignment  is attempted on , replicating the
component on the upper series 

Warp, Replication. Each component  can be assigned to any component .
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Dynamic Time Warping (DTW)
DTW divides the alignment problem in
two steps:

1. compute a cumulative minimal
alignment cost matrix , defining
the minimal alignment cost of every
pair of components 

2. search an alignment  on ,
minimizing the alignment cost

A DTW alignment (top), and a cumulative alignment cost
matrix  (bottom).
The  component holds the cumulative cost of aligning
the .

 stands for sum, unlike the alphabet used in SAX representation. 47



Warping in Dynamic Time Warping
 computes a minimal and cumulative:  may be !

base case: the alignment  has minimal cost. This is trivially true, since there
are no accumulated costs, i.e., 

inductive case:  fall within the three warping categories, thus it must be one of
three cases

(no warp) : the accumulated cost is 

(lower warp)  has warped: the accumulated cost is 

(upper warp)  has warped: the accumulated cost is 
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Computing warp cost
Entries in  are computed as

Directions of minimal accumulated cost  over :
entries indicate which alignment choice has produced the
minimal cost.
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Searching for the lowest cost alignment
As a matrix of minimal accumulated alignment cost, we know that for each component

 in , we have, by construction, the minimal cost to align up to .
Thus, we can simply start from the last alignment, and follow  backwards for the
warps of minimal cost!

Directions of minimal accumulated cost  over : the red path from the last entry indicates induces the alignment of
minimal cost. The alignment  is given by the indices of the path.
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Dynamic Time Warping

A Dynamic Time Warping alignment.

Minimizes norm cost on shifted
series

High cost of 
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Constraining alignments
Within , we have several possible movements:

alongside a row (  is constant): indicate a sequence of upper warps, as we are
aligning one component of  with consecutive components of 

alongside a column (  is constant): indicate a sequence of lower warps, as we are
aligning one component of  with consecutive components of 

diagonally (neither  nor  is constant): indicate a no-warp alignment
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Sakoe-Chiba search
The optimal search we have highlighted can move almost arbitrarily over , inducing
arbitrarily large row- and column-segments, and thus arbitrarily large warps.
Sakoe-Chiba search instead constraints the alignment  to be such that

 by introducing a search radius , and binding the maximum warp
size of either series.

0:00 / 0:03
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Itakura parallelogram
The Itakura constraint instead binds the slope of segments, effectively binding
consecutive warps.
For any two .

0:00 / 0:03
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From alignment to similarity
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Time series: similarity
Similarity Similar if... Measure Sensitive to

Straight match Similar values Norm (Euclidean) Time shifts

Dynamic Time
Warping

Similar (interleaved)
shapes

Norm

Autocovariance Seasonal Inner product
Amplitude
shifts

Statistical Similar statistics
Mean, Variance,
etc.
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Credits for some images and animations to Romain Tavenard.
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