
Supervised tasks

Four approaches to classi�cation
By any means, not the only ones!

Trees

Can I learn a space
partition that
separates the data
according to its
label?

Kernel

Can I predict the
label through its
similarity with the
data?

Bayesian

Can I estimate the
probability of the
label, condition on
the data?

Neural

Can I predict
through
computational
graphs?

1

Kernel approaches
Beyond linearity

2

Kernel approaches: SVMs
The very same family of models we have
seen for outlier detection, but moved from
a one-class to a binary setting. The set of
outliers is now given: it is one of the
classes!

The margin (in beige) centered on the hyperplane
separates the two classes: we wish to maximize this!

3

Support Vector Machines
Let us define a hyperplane separating

 and , for which we have

Instances in the margin (called support
instances/vectors) solve this for

We can compact the two into Instances and a separating hyperplane
. The two half-planes in red and

blue are defined by and
, respectively.

4

Support Vector Machines
Geometrically, it is the projection of
margin points onto a direction
orthogonal to the margin:

which we can solve as

Two instances (red square), (blue circle), their
difference (in blue-to-red gradient), and a vector
orthogonal to the margin (in black). The width of the
margin is then the projection of the difference on such
vector.

5

Support Vector Machines
Solving analytically, we have that

1. The defining hyperplane is a linear combination of the instances!

2. Some (hopefully many) instances have a zero coefficient , the others define
(support) the hyperplane

3. The optimization takes the form

For a more in-depth derivation, see MIT OpencorseWare, 16. Learning: Support Vector Machines 6

https://youtu.be/_PwhiWxHK8o?t=1367

Tackling linearity: the Kernel trick
We map data from the input space to through a kernel function.

Kernel SVM: the margin can take nonlinear form.

Kernel Linear Radial basis Polynomial

Formulation

7

Support Vector Machines: theoretical
pointers
Capacity

SVMs have a straightforward
interpretation of capacity:

number of support vectors

complexity of the kernel

Variance

Variance of SVMs is low when no kernel is
used, since they offer a closed-form
solution of the problem. It may increase
with the complexity of the kernel used.

8

Support Vector Machines: regularization
Support regularization
SVMs offer a form of regularization aimed at decreasing capacity by reducing the
magnitude of support vectors.

The performance measure of a -regularized SVM is defined as:

9

Support Vector Machines: regularization
Soft regularization
SVMs offers a form of regularization aimed at increasing variance by allowing for some
incorrectly classified instances. That is, of the margin defined by the support vector may
be violated from time to time.

The margin constraint thus become

where plays the role of a slack variable, cutting some slack to the strictness of the
margin.

10

Bayes
Back to the probability world.

11

Probabilities
Given a discrete random variable describing a phenomenon, we have a probability

 that the event occurs. For to be a proper probability
function it must hold that:

[Bounds] For any event

[Certainty]. The certain () and impossible event () have

[Disjunction]. For any two events , it holds

12

Multiple variables
Marginalization
When jointly considering multiple discrete variables with joint distribution ,
we can reduce to one variable through marginalization, i.e.,

which, in simple terms, marginalizes over all possible events of , thus factoring it out of
the distribution.

13

Multiple variables
Conditioning
When jointly considering multiple discrete variables with joint distribution ,
we can estimate the probability of given . This is a special case of joint
distribution: of all the joint events wherein an event occurs, only the ones in which
also occurs:

Note: . 14

From conditioning to Bayes
Conditioning allows us to define a powerful rule for probability, relating two variables
and their conditioning. Back to the conditioning rule, let us multiply both sides by of

 by to have . By plugging this back
in we have

The Bayes rule relates the conditional probabilities of two random variables. It states
that, whenever we have a conditioning probability in one direction, e.g., , we can
flip the direction.

Note: . 15

Bayes and generative models
The Bayes rule can be interpreted as a generative model: given a random variable
defining a generative process, and another variable defining some observations of the
process, it allows us to define the process from the observations. Thus, it is often
described as:

where parameterizes a generative model of , and is an observation of a
phenomenon. Here, we can identify three components:

prior the prior belief about the generative model;

likelihood the likelihood of the data given the model;

posterior the posterior probability of the model, given the data.
16

Naive Bayes
By framing labels as values, we can simply look to learn a probabilistic model

 for an instance and label .
Computing over all the labels, we have probabilities for all possible labels, and can pick
the best one. A Naive Bayes model implements a function

Note: When dealing with probabilities, convention is to use capital letters to indicate random variables, and lowercase letters to
indicate values. Here, does not indicate the feature matrix, rather the random variable associated to the -th feature . Same
holds for . 17

Bayes and factorization

The chain rule states that we can model the relationship between any set of variables, but
at a huge cost: a chain of conditional dependencies.

Chain rule.

For a joint distribution it holds

18

Bayes and factorization
The chain rule states that we can model the relationship between any set of variables, but
at a huge cost: a chain of conditional dependencies.

Factorization of according to the chain rule:
 Every

variable is dependent on a set of other variables.

19

Independence in Naive Bayes
To tackle chain factorization, Naive Bayes
assumes independence of the variables

Variable independence.

For two variables , we say that
 is independent of if

A factorization of with independence
assumption: the label is conditioned on the variables, for
which no dependence is assumed.

20

Naive Bayes
A Naive Bayes model is of the form

Leveraging Bayes' theorem, this amounts to

Which begs the question: how to estimate ?

Empirical count

Density of a probability density function of a distribution fit on

21

Naive Bayes
Simple definition

Extremely fast to compute

Assumption of variable
independence

Limited by the distributional
approach

A graphical view of the a Naive Bayes model: the label is a
function of independent variables.

22

Ensemble methods
Tackling variance, once more

23

Mitigating variance... or not
As highlighted by the bias-variance decomposition, learning algorithms can incur in a
variance in terms of generalization. We have seen two strategies to mitigate this:

Cross validation: reduce variance by increasing samples

Regularization: reduce variance by reducing capacity

There exists a third way, somewhat related, approach: leverage variance.

24

Bagging
Bagging leverages learning algorithms with moderate-to-high variance: rather than
learn a single model , it learns a set of models , and combines them into one.
A bagging model is of the form

Following the bias-variance, bagging algorithms aim to learn a model on separate
samples of the distribution .

Assumption: models retain a low-enough bias to be accurate on their respective bags.

25

Bagging

On the left, data, sampled from the distribution . On the right, a visualization of bagging: samples are split in several bags
(here, color-coded). Each bag is used to learn a different model, which will then be part of an ensemble.

26

Random Forests
Decision Trees show a moderate variance, and thus are a perfect candidate. Random
Forests sample a set of bags by sampling:

Random instances, through stratification

Random features within the bag

Thus creating learning sets heterogeneous in both instances and features. Bags are
sampled with replacement!

27

Bagging

On the bottom, the bagged data, each bag indicated by a different color. On top, a set of learned trees, color-coded as the bag
they have been learned from: the red tree has been learned on the red bag, and so forth. Note: Random Forest samples bags
with replacement: an instance may be part of up to bags.

28

Random Forests

Simple definition with high variance models

Interpretable-ish results

Fast learning

Weak to high degrees of covariance

Sampling with replacement: risk of high correlation

Random bagging

29

Bagging... what?
How would you bag?

30

From bagging... to Boosting
With bagging models, we assume locality in the data distribution, and thus learn
different models on different bags. Up to re-sampling, each instance is uniquely
predicted by one model. If models have high-enough bias, then we are not gaining much
from bagging data.

The hard bags of bagging are limited by the bias of each model: if none of them are good
enough, their number does not matter, and dividing the task yields no advantage. In
other words, in a crowd of weak learners, there's no wisdom to be had.

Why don't we bag the task instead?
Robert E. Schapire, The Strength of Weak Learnability.

31

http://rob.schapire.net/papers/strengthofweak.pdf

Boosting
Boosting creates fuzzy soft bags, wherein instances are jointly predicted by all models,
thus decomposing the task, rather than the data!

Bagging VS Boosting. In bagging, each bag is used to learn a model. In boosting, bags are fuzzy, and the task is decomposed so
that each model predicts a subset of it.

32

Boosting: a general formulation
Like bagging, we have a model of the form

which is learned iteratively: first , then , etc. Sums and multiplications by scalar:
looks like a job for linear algebra!

33

Boosting and the functional (linear) space
Since we are operating with finite
datasets, we can interpret functions as

vectors in a
vector space. Thus, we can interpret
operations on functions as operations on
vectors:

A model space of decision trees: in this space, summing
allows us to generate novel decision trees, while inner
products allows us to compute their alignment.

34

Boosting: exploring the functional space
Boosting models are learned iteratively,
each additional model looking to
reduce a predefined loss

The additional function is one of
possibly many (possibly infinite)
directions we can take in functional space.
We want to pick the direction minimizing
loss! What direction minimizes loss?

 and some (of possibly infinite) directions .

35

Exploring optimization: the gradient
The one minimizing ! To know such
direction, we rely on calculus, i.e., we compute the
gradient of w.r.t. . The negated
gradient is the direction of minimization.

Boosting and iterative optimization: we
construct the model one loss
improvement at a time, exploring the
loss space.

36

Exploring optimization: the gradient
Note: the space of models to which
belongs may not be continuous, thus we
can't necessarily directly define , so
we choose the closest match, i.e., a
maximizing its similarity:

Boosting and iterative optimization: each model is added to
the boosting model, thus moving across the model space.

37

The gradient in boosting: residuals
In boosting models, gradient of the loss
gives us a search direction, but also a
residual: practically, since each model is
additive, gradients define directions as
much as residuals we want to optimize.
Thus, we fit models on datasets

.

Boosting and iterative optimization: each model is added to
the boosting model, thus moving across the model space.

38

Boosting: a most generic algorithm
Knowing how to learn a model, we can
inductively define any boosting
algorithm:

1. Initialize

2. Find optimal direction

3. Find admissible direction

4. Find learning step

5. Learn

6. Go to 2.

39

Boosting: a most generic algorithm
Knowing how to learn a model, we can
inductively define any boosting
algorithm:

1. Initialize

2. Find optimal direction

3. Find admissible direction

4. Find learning step

5. Learn

6. Go to 2.

Notes

The function space could be
anything: the space of Decision
Trees (Gradient-Boosted Trees), of
Logistic Regression (Logitboost), etc.

Regularization is usually applied to
: allows to have weak learners,

which helps with decreasing overfit

40

Boosting and its many �avors
Adaboost. Uses an exponential loss, adapts with a closed form search

Gradient-Boosted Trees. Leverage Decision Trees as models

XGBoost. Leverages trees, and uses a more robust loss approximation through the
Hessian, rather than the gradient

41

Boosting and bagging: regularization
Regularization is performed directly on the weak learners (to make sure we keep
variance high), but can be applied post-hoc too through pruning!

42

Boosting
Model-agnostic

Given some relatively likely
theoretical assumptions, has
extremely low bias

Unlikely to overfit

Computationally quick

Largely uninterpretable
Boosting: we iteratively refine the model by exploring
the function and loss space.

43

References
Source

Bayes
David Barber. Bayesian Reasoning and Machine Learning.
Sections 1.1-1.3

Support Vector
Machines

Support Vector Machines

Bias, Variance
Deep Learning. I. Goodfellow, Y. Bengio, A. Courville. Sections
5.4

Boosting, Bagging
Deep Learning. I. Goodfellow, Y. Bengio, A. Courville. Sections
7.11

Random Forests Random Forests

44

https://ocw.mit.edu/courses/6-034-artificial-intelligence-fall-2010/resources/mit6_034f10_tutor05/
https://link.springer.com/article/10.1023/A:1010933404324

