
Data representation



Data representation
Original representations are defined in raw terms of the data, and not in terms of its
intended use:

Manipulation

Exploration

Visualization

How to best represent data?
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How to represent data?
We will deal with two (out of many) approaches. Represent data...

By correlation
I want to represent data
according to the
correlation of the dataset

Algorithm: PCA

By neighborhood
I want to represent the data
so that similar instances
are similar

Algorithm: t-SNE .

By manifold
I want to represent the data
so that its manifold is
preserved

Algorithm: UMAP .
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Principal Component Analysis (PCA)
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Vectors, linear combinations, and spaces
Vectors are -dimensional elements in a
field, and enjoy both addition and
multiplication by scalar.

Composing these two, we can generate an
infinite number of vectors: this is a vector
space, and is defined by the basis vectors
involved in the composition.

Two vectors  (in red and blue), and the plane spanned
by all their linear combinations  (in purple).

For simplicity, we consider Real fields. 4



Vectors, linear combinations, and spaces
The simplest linear combination: scaling.
Given a vector , we have combination ,
which defines a direction in the space.

A vector , and the direction .

For simplicity, we consider Real fields. 5



Vectors as linear combinations
Given a suitable set of vectors, called
basis, we can redefine every vector as a
linear combination of the basis.
Protip: is it called basis because it defines
the basis coordinates of the space!

Every vector  can be defined
as a linear combination of the standard
basis   

, with coefficients
.

A vector , defined as a linear combination .

v

u
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Changes of basis
If I change the space, where do the vectors end up? I simply redefine them... in terms of
the new coordinates!

  

A vector , defined as a linear combination , on three different basis.
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Subspaces and projections

They allows us to view the same object from different points of view at different
dimensionionalities.

Projections allows us to define a subspace-
dependent view of a vector, mapping them
in another subspace.

How would this -dimensional
vector look from this -dimensional
plane?

How would this -dimensional
vector look from this -dimensional
hyperplane?

...

Projection  of a vector (in blue) on a subspace defined by
vector : the error  is perpendicular to the subspace.
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Vectors and matrices
We encode vectors in  matrices,
easing computation of several interesting
properties, including actual
dimensionality. Since vectors define a
space, matrices define a space!

We can define a vector in terms of a
linear combination of the columns of a
matrix through matrix-vector
multiplication.

A  matrix , and the space spanned by it through
linear combinations .
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Matrices as linear transformations
A matrix  defines a space... and thus a linear
transformation!  linearly combines the columns of 
with coefficients given by , and yields:

a rotation of 

a scaling of  by some factor 

other more complex transformations.

With vectors... simply put them in a matrix too!

Linear transformations can
rotate, scale, or otherwise
linearly transform vectors.

Vy

Vx

Vv
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Peculiar transformations: eigenpairs
Among all possible directions (subspaces
defined by a single vector), some

 are always scaled:
.

A linear transformation  and its effects on vectors :
its eigenvector  is stretched by a factor of .

Eigenvectors and eigenvalues
The eigenvectors  of a matrix  define the stretching of the space, and
their eigenvalues  define the stretching factor.
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Symmetric matrices and eigenpairs
Among all possible matrices, symmetric
matrices have a peculiar relationship with
eigenpairs.

A symmetric matrix  of size :

Always has  unique
eigenpairs

The eigenvectors are orthogonal

Symmetric matrices may be rare... but
given a matrix ,  is always
symmetric!

A linear transformation  and its effects on vectors :
its eigenvector  is stretched by a factor of .

12



Symmetric matrices and eigenpairs

Spectral decomposition
A symmetric matrix  with eigenpairs  admits a decomposition

where  is an orthogonal matrix.

We can redefine our data in terms of its directions!
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Linking back to data representation
allow us to...

Matrices organize our data

Projection map the data to another (more suitable) space

Eigenvectors define the characteristic directions of the data

Eigenvalues define the scaling across said directions
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Principal component analysis (PCA)
Data can often be correlated, and linear
dependencies can exist among variables,
e.g.,

Rent is linearly dependent on salary
and food expenses

Bank deposit is linearly dependent
on salary and work

Cardio is linearly dependent on
hematocrit and 

A two-variables mean-centered dataset , and the slope
between the variables.

Wouldn't it be nice to remove all such dependencies, and pack them together?
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Principal component analysis (PCA)
PCA projects some data  to  through a linear transformation : .

Fun fact #1: for a mean-centered , the
slope is directly proportional to the
covariance!

Fun fact #2: we can measure covariance
(and thus slope) through matrix
multiplication .

A two-variables mean-centered dataset , and the slope
between the variables.

For those interested, see the slopes and covariance.pdf  supplement. 16



PCA and the covariance matrix 
PCA aims to embed collinearity in a set of novel features: each novel feature is defined in
terms of linear combinations of other features.

With collinearity already embedded, are the novel features collinear?
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PCA and the covariance matrix 
PCA aims to embed collinearity in a set of novel features: each novel feature is defined in
terms of linear combinations of other features.

With collinearity already embedded, are the novel features collinear? No!

PCA aims to transform  into  with zero covariances:
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PCA: mathematical formulation
We start with defining our result , and its symmetric covariance matrix ,
which we wish to diagonalize:

With , we can rewrite this as

Remember: the transpose of a product is the same product with inverted orders, and its components transposed: . 18
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PCA: leveraging eigenvectors
As a symmetric matrix,  enjoys an orthogonal eigenvalue decomposition .

Now, let us plug that back in :

Remember: our goal is to make this matrix diagonal! How do we do it?
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PCA: leveraging eigenvectors
As a symmetric matrix,  enjoys an orthogonal eigenvalue decomposition .

Now, let us plug that back in :

Remember: our goal is to make this matrix diagonal! We already have a diagonal matrix
( ), ideally we'd like to remove all the other factors. We can do so because  is our
unknown! Let us set  to :

In the last step,  resolves to  because of double transpose. 19



PCA: leveraging eigenvectors
Again by property of symmetric matrices, the eigendecomposition yields orthogonal
eigenvector matrices, that is, matrices  whose inverse is the transpose, that is,  is such
that . This results in

which gives us the diagonal covariance matrix  we were looking for. It follows that the
linear PCA transformation is given by , the transpose of the eigenvectors matrix
of .
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PCA algorithm: a summary
1. Mean-center your data , obtaining 

2. Compute its eigenvectors matrix .

3. Transpose  to obtain the transformation matrix .

4. Project  through , obtaining the PCA-transformed data .
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Using the PCA
Observations

PCA redefines data by removing
collinearity: if your data has low
covariance, the transformation will
have minimal effect.

PCA performs a linear
transformation to tackle linear
relationships between variables.
Nonlinear relationships are not
influenced.

Uses

Feature selection: high covariance
of a feature may indicate
disposability.

Dimensionality reduction:

trimming columns of  lets us

reduce the dimension of the
resulting data.

Clustering preprocessing:
correlated features inflate object
similarity.
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Using the PCA (poorly)
By collapsing covariant variables, instances may collapse together.

 

2-dimensional instances, and a 1-dimensional mapping.

What if we instead represent by neighborhood?
Geoffrey Hinton, Stochastic neighbor embedding. 2002
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https://cs.nyu.edu/~roweis/papers/sne_final.pdf


-distributed Stochastic Neighbor
Embedding ( -SNE)
-SNE focuses on data clusters rather than subspace representation, and again maps the

original data  to a representation .

-SNE tackles this problem in two phases:

1. Similarity phase  In the original space , how similar is  to ?

2. Embedding phase  In the mapped space , how similar is  to ?
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Similarity phase
How similar is  to ? Even better, what is the probability that  is a neighbor of ?
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Neighboring phase
How similar is  to ? Even better, what is the probability that  is a neighbor of ?

Neighboring through distribution.
Every instance  defines a probability distribution

 of neighboring.

 estimates the probability of  being a
neighbor of  on the basis of their euclidean
distance .

In general, , hence .

A Normal  distribution centered on  (the red
instance), and the relative density of another instance

 (in pink).
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Neighboring phase: locality
 defines the bandwidth of the Gaussian,

and as such, the density of the cluster. We
choose  so that the resulting local
distribution, and thus clustering, has a
controlled intra-cluster similarity.

A Normal  distribution at different bandwidths
.
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Neighboring phase: defining locality
The perplexity hyperparameter  quantifies the heterogeneity of the distribution: the
larger the perplexity, the more heterogeneous the cluster, and the farther the points
included in the cluster: 

 

 measures the entropy  of the distribution. 28



Neighbors as a starting representation
The neighboring step generates a (soft)
neighboring matrix  akin to the one we
use in clustering. The subsequent goal of 

-SNE: to learn a representation  with as

close a neighboring matrix  as possible.

Instances lied on a Normal (left) and -student (right)
distribution, induced by the original representation , and

by the -SNE representation , respectively. -SNE aims to
make the densities on the two as similar as possible.
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Searching for neighbors in 
 is typically a lower dimensional space

than , in which the tails Gaussian
distributions decrease rapidly, and far-
away instances end up crowding them.
Rather, -SNE employs a -student
distribution with 1 degree of freedom,
which has much slacker tails.

Instances lied on a Normal (left) and -student (right)
distribution: -SNE aims to make the densities on the two as
similar as possible.

The low tail and consequent concentration of instances on the tails is called 'overcrowding'. 30



Searching for neighbors in 

Representation optimization.
-SNE minimizes the distance

between  and  through Kullback-
Leiber divergence. Each  induces a
minimization

Densities of various points on the original normal
distribution (left), and on the -student distribution (right).

The low tail and consequent concentration of instances on the tails is called 'overcrowding'. 31



Using -SNE
-SNE computes a full similarity

matrix, thus it can be
computationally expensive on
extremely large datasets

Unlike PCA, the transformation is
not linear, and thus expressively
more powerful (at the cost of
interpretability)

Perplexity is an hyperparameter
that should be tuned

The optimization algorithm hides
another set of parameters, which
can result in nondeterministic
results

Perplexity is, in some hard-to-define
way, related to dataset size. The
more points in the dataset, the
higher the inherent heterogeneity
of the cluster, the higher the
required perplexity. How much
higher?

Ridiculously good visualization at https://distill.pub/2016/misread-tsne/ 32
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PCA VS -SNE
PCA -SNE

Transformation Linear Nonlinear

Hyperparameters None Perplexity

Determinism Deterministic Nondeterministic

Interpretability Interpretable Noninterpretable

Locality Global Local

Computational cost Low, High
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A third way: Uniform Manifold
Approximation and Projection

PCA and -SNE tackle locality as a dichotomy: either global, or local, and are thus not
locally-adaptive:

PCA: we study spectral decomposition of the whole dataset

-SNE: we define perplexity over the whole dataset

What if we adapt the neighborhoods?
Leland McInnes, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. 2018
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https://arxiv.org/abs/1802.03426


UMAP and the adaptive manifold
Both -SNE and UMAP approximate the data manifold, only the former can only
approximate it accurately for uniform manifolds! Unlike -SNE, UMAP locally adapts the
manifold to each instance, thus defining adaptive neighborhoods, each instance
defining its neighborhood with its own parameterization.

A visualization of a possible adaptive neighborhood definition: distance to the -th
neighbor adaptively and locally determines the manifold. Each instance stretches the
space so that its own neighborhood has a given volume.
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https://pair-code.github.io/understanding-umap/


UMAP and the connectivity graph
The computed distances induce a connectivity graph, and thus an adjacency matrix , its
edges measuring distances among instances. After turning distances into probabilities,
UMAP optimizes a distance on , to make it so that all and only the edges on the original
manifold also appear in the transformed manifold with the same magnitude.
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UMAP and the connectivity graph
For the set of edges , UMAP minimizes

where  indicate the probability of edge  in the original and
transformed representation, respectively.
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PCA VS -SNE VS UMAP
PCA -SNE UMAP

Transformation Linear Nonlinear Nonlinear

Hyperparameters None Perplexity Neighborhood size

Determinism Deterministic Nondeterministic Nondeterministic

Interpretability Interpretable Noninterpretable Noninterpretable

Locality Global Local Adaptive

Computational cost Low, High Low, but higher than PCA
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Data representation: which to choose?
PCA

Strong mathematical
foundation

Interpretable results

Extremely fast

Global

-SNE

Powerful

Slow

Sensitive to
initialization and
parameters

Parameters a bit
obscure

UMAP

Adaptive

Interpretable
parameters

Strong mathematical
foundation

Fast

Sensitive to
initialization
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Space representations
Representations allows us to map data into another space. What if we pick a space of
smaller dimensionality?

  

From the original dataset, to an alternative representation, to a smaller space representation.
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Space representations in PCA
PCA is a linear transformation ,
and as such it follows standard dimension
rules on matrix-* multiplication:

 yields a matrix .

We can trim columns off of ... but at
what cost?

Eigenvalues in decreasing order of magnitude: larger
eigenvalues increase the magnitude of instances, lower
instead lower it. We can trim this with the elbow method:
look for a value of maximum change in eigenvalues.
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Space representations in PCA
PCA is a linear transformation ,
and as such it follows standard dimension
rules on matrix-* multiplication:

 yields a matrix .

We can trim columns off of ... but at
what cost?

PCA norm on an increasing number of trimmed
dimensions. We can trim this with the elbow method: look
for a value of maximum change in eigenvalues.
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