
Anomaly detection
Also known as "trova l'intruso".



Anomaly detection
Due to its practical use in the literature, we'll refer to anomalies also as outliers.

What is an outlier?
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Outliers properties
Outliers are...

Inherently fuzzy. An instance has a degree of outlierness, which we can threshold
to decide whether an instance is an outlier or not.
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Outliers properties
Outliers are...

Inherently fuzzy. An instance has a degree of outlierness, which we can threshold
to decide whether an instance is an outlier or not.

Data-dependent. Outlier are exceptions to the data. But outliers themselves define
the data...?

Not noise. Noise is random, outliers are exceptional.

Mono- or multi-dimensional. An outlier can be so on one just one dimension, or
on multiple.
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De�ning outliers
Whatever the definition, we have two separate
families of definitions:

Something unusual. A penguin in this
classroom.

Something extreme. A cassata at a cake
competition.

A Normal distribution .
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De�ning outliers
Whatever the definition, we have two separate
families of definitions:

Something unusual. A penguin in this
classroom.

Something extreme. A cassata at a cake
competition.

Examples
We are given the census of Pisa.

An outlier that is unusual?

An outlier with extreme
values?
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De�ning outliers
Whatever the definition, we have two separate
families of definitions:

Something unusual. A penguin in this
classroom.

Something extreme. A cassata at a cake
competition.

Examples

Unusual: a 95 y.o. Amazon
native.

Something extreme: a
university professor.
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The central problem with outliers
Outliers are, by nature, defined in terms of other instances. Whatever approach we use
to detect them, we should take into account that they influence it as well.

The +1 problem. How many other "outliers" should I introduce in the data, before
there are no more outliers?
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Finding outliers: a 2-tier approach
Most algorithms use a two-tier approach:

1. Grading  Define a grading function  quantifying the degree of anomaly

2. Thresholding  Define a thresholding function  to map the degree to a binary label
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Axes of analysis
How to characterize outlier detection algorithms?

Axis

Locality Is the outlier global to the dataset, or local to a neighborhood?

Sensitivity
Is the algorithm heavily impacted by data with some particular
characteristics?

Interpretability Can we interpret why an instance is an outlier?
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De�ning unusual and extreme
We define outliers by studying...

... the distribution of the
data:  is a function of the
data distribution.

... the data manifold:  is a
function of the shape of the
data.

... the neighborhood:  is a
function of the instance's
neighbors.
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Outliers and distributions
Data distributions offer a very natural and straightforward way of defining outliers,
particularly when thinking of outliers as unusual occurrences.

( ) Scoring amounts to density estimation

( ) Thresholding amounts to critical value selection
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Scoring, Normally: 
What is the anomaly degree? The scaled
distance from the mean.

Assumption: Data follows a normal
distribution .

Idea: degree is given by weighted distance
from the mean.

Degree of anomaly  of a sample  is 

Strong relationship with -SNE! 14



Tackling the +1 problem: Grubbs test
 generate sample-dependent

outlier degrees , but does
not tackle the +1 problem. Grubb's test
iterates over detected outliers, removing
one layer of outliers at a time, until no
more outliers are found.

A Normal  distribution at different bandwidths
.

Designed for extremely small samples (<100), correction errors ensue when several iterations are performed. 15



Tackling the +1 problem: Grubbs test
Grubb's test iterates over detected outliers, removing one layer of outliers at a time, until
no more outliers are found.

1. Find current outlier set 

2. If , terminate

3. , go to 1
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 and Grubbs test
Axis

Locality Global

Sensitivity
Outliers themselves influence the distribution, but can be removed
(Grubbs)

Interpretability Low: no reason other than "Not many similar instances"
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Generalizing to distribution locality
Data may vary locally: subsets of the data each follow a different distribution.
Assumption: there exists a partition of the data, each block distributed according to a
Normal distribution.

One of  models  is sampled, each with a sampling probability . Different
distributions sample in different regions of the density, e.g., the data distribution may not
be Normal, but some subspaces may.

A mixture of Normals : each is sampled with probability , respectively.
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Mixture models
Axis

Locality Local

Sensitivity Outliers themselves influence the distribution, can be unstable

Interpretability Low: no reason other than "Not many similar instances"
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Thresholding distributions
The critical values  represent the density, i.e.,
relative likelihood of : different thresholdings of

 yield different outliers. For some ,  is an
outlier, for some others, it is not.

Choosing  is arbitrary, but some algorithms, such
as Grubbs', define their own threshold

Tails of a Normal distribution.

Procedures for Detecting Outlying Observations in Samples, Frank E. Grubbs 20



Generalizing thresholding
 assume a Normal distribution, but often this is not the case. Yet, we can still

identify tails of a distribution, and in turn, anomalies.

Markov inequality
For a variable  with positive values, and threshold , it holds

Thus, given an estimate of the variable's expected value, we can retrieve the inverse of an
image of its cumulative distribution ( ).

The tails of a distribution simply identify extreme events, thus only a category of anomalies applies. 21



Generalizing thresholding
 assume a Normal distribution, but often this is not the case. Yet, we can still

identify tails of a distribution, and in turn, anomalies.

Chebychev inequality
For a variable  and threshold , it holds

That is, the probability of deviation from the mean is inversely proportional to the
deviation, and directly proportional to the variance.

The tails of a distribution simply identify extreme events, thus only a category of anomalies applies. 22



Modeling the data distribution
Assumption
The data follows a
probabilistic process of the
selected family.

Anomaly degree
Estimated density.

Thresholding
Critical value.

Natural and straightforward
definition of outliers

Strong theoretical background

Clear interpretation of the scores ,
and clear definition of its
thresholding function

Sensitivity to outliers

Sometimes unstable, especially in
very high dimensions

Limited expressivity

Little interpretability of the result
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Modeling the data manifold
Distributional approaches define the density, but do not describe the data itself.  is
defined in terms of the manifold: does the given instance lie in the manifold? Just like
the distributional approach, we must assume the manifold family.

To preserve the interpretability of our results, we stick to linear manifolds*.

*We won't. 24



Scoring in a manifold
By definition, the degree of anomaly an
instance is its distance from the manifold.

A linear manifold (a plane), and distances of some
instances to the manifold (in red).
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Impossible manifolds and projections
A matrix  spans a linear space, thus every vector  in its spanned space is defined as a
linear combination of : . For non fullrank matrices , such a solution  may not
exist. Thus, we need to project on the data manifold.

Assumption: Least squares assumes a linear manifold, and squared norm as distance
metric.

Least squares.
A least squares solution minimizes
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Grading in Least Squares
The least squares projection induces
errors , which can be used as outlier
scores, i.e., .

Can we apply this to any dataset?

Scores  are given by the errors on the Least Squares
approximation (in red in the picture).
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Projections
The vector  is projected onto , a vector on the
linear space spun by , and yielding an error
vector . The projection is orthogonal, thus
it must hold . Also,there exists a vector 
s.t. . Thus,

Projection  of a vector  (in blue) on a
subspace : the error  is perpendicular to the
subspace.
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Least squares and collinearity
The formulation of the projection is thus

which does not admit a unique solution for a singular , and is prone to instability
for  nearly nonsingular. Since the sample covariance matrix  quantifies the
collinearity of , least squares does not admit solutions for perfectly collinear data. To
make matters worse, when the data is nearly collinear, the computation is unstable.
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Tackling collinearity: PCA
The instability of least squares is due to the data collinearity. A possible solution: de-
correlate the data! Principal Component Analysis (PCA) does just this.

The cost: lower interpretability of the results.
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Least Squares
Axis

Locality Global

Sensitivity Strongly influenced by outliers

Interpretability
Partial: which instances have lower degrees? What even is a "low"
degree?
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Discriminative detection
Manifold approaches describe the manifold by defining it in terms of its instances.

Why don't we discriminate outliers instead?
Mary M. Moya, Don R. Rush. Network constraints and multi-objective optimization for one-class classification, 1990
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(Linear) Discriminative outlier detection

Assumption #1: I have some
knowledge about which instances
are outliers ( ).

Assumption #2: Outliers can be
defined linearly with respect to the
inliers ( ).

Paradigm shift: we define the manifold
as a separating manifold that separates
the data from outliers.

Inlier instances  (red squares) and a separating
hyperplane  separating them from outlier
instances  (blue circles).
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(Linear) Discriminative outlier detection
Our goal: to best separate the outliers, that
is, to maximize the distance between
them and the inliers. In other words, to
find a discriminative criterion maximizing
the distance between inliers and outliers.

Two goals:

1. Find a formula for the margin

2. Maximize it

The margin (in beige) centered on the hyperplane
separates inliers and outliers: we wish to maximize this!

34



Support Vector Machines
Let us define a hyperplane  separating

 and , for which we have

Instances in the margin (called support
instances/vectors) solve this for 

We can compact the two into Instances and a separating hyperplane
. The two half-planes in red and

blue are defined by  and
, respectively.
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Support Vector Machines
Geometrically, it is the projection of
margin points onto a direction
orthogonal to the margin:

which we can solve as

Two instances  (red square),  (blue circle), their
difference  (in blue-to-red gradient), and a vector
orthogonal to the margin (in black). The width of the
margin is then the projection of the difference on such
vector.
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One-class Support Vector Machines
Solving analytically, we have that

1. The defining hyperplane  is a linear combination of the instances!

2. Some (hopefully many) instances have a zero coefficient , the others define
(support) the hyperplane

3. The optimization takes the form 

For a more in-depth derivation, see MIT OpencorseWare, 16. Learning: Support Vector Machines 37

https://youtu.be/_PwhiWxHK8o?t=1367


Tackling linearity: the Kernel trick
Can we relax linearity without losing the interpretability of the algorithm? Yes, by
changing the data itself, rather than the algorithm. We map the data from  to , a space
wherein instances are not strictly defined in terms of their features, but rather in terms
of inner products, e.g., dot product, with other instances.

 

Kernel SVM: the margin can take nonlinear form.
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What kernel  to choose?
There is a wide array of plug-and-play kernels we can use.

Kernel Formulation Description Similarity

Linear Basic linear kernel Angle-based

Radial basis Exponentially decaying similarity Distance-based

Polynomial Exponential kernel Angle-based

39



Grading in One-Class Support Vector
Axis

Locality Global

Sensitivity Choice of : typically composed of negative instances

Interpretability Yes! Support instances define the margin
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Modeling the manifold
Assumption
The data lays on a (linear)
manifold

Anomaly degree
Distance from the manifold

Thresholding
Unbounded and domain-
dependent

Flexible nonlinear manifold May be computationally unstable

Strong manifold assumptions

Possibly uninterpretable results
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Modeling neighbors
Manifold-based algorithms are as flexible as the defined manifold. Like with mixture
models, neighbor-based approaches reintroduce locality: outliers are defined in
function of their neighbors:

Connectivity  An outlier is defined in terms of the connectivity to its neighbors

Concentration  An outlier is defined in terms of its neighbor concentration

Concentration is often defined as density: we use the former to remark that is is not a relative likelihood. 42



Modeling neighbors connectivity
Assumption: an instance is as much an inlier as it connected to other instances.

Each instance has a posting list of neighbors, from
the closest to the farthest: the lower the aggregated
position in other lists, the higher the connectivity
degree.

Posting position defines connectivity: it is
not density

Connectivity is asymmetric: I may be your
closest instance, you may not be mine

Connectivity as a postings (not adjacency!)
matrix :  is the  nearest neighbor of
instance . The first column of s has been
trimmed.

How do we populate the posting lists? ! 43
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Each instance has a posting list of neighbors, from
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Modeling neighbors connectivity
Assumption: an instance is as much an inlier as it connected to other instances.

Each instance has a posting list of neighbors, from
the closest to the farthest: the lower the aggregated
position in other lists, the higher the connectivity
degree.

Posting position defines connectivity: it is
not density

Connectivity is asymmetric: I may be your
closest instance, you may not be mine

Neighbors at 3 of two instances (in red and
blue): their neighbors circled of the same
respective color.

How do we populate the posting lists? ! 46



Grading neighbors connectivity
Posting matrices are often used as a base on which
to measure different indices of connectivity, e.g.,

hub: instance  is at least the 
neighbor of at least  other instances

popularity: instance  is on average the
 neighbor of at least  other instances

ostracism: instance  is, at worst, the 
neighbor of other  instances

An instance (top) and its connections to other
instances in the dataset.
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Thresholding neighbors connectivity
Connectivity lends itself to several thresholdings:

Position statistics
I threshold instances which are

always

on average

never

the  neighbor of other
instances.

Neighbor statistics
I threshold instances which are at least
the  nearest neighbor of  instances.
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Connectivity for hubs

Definition used by ODIN: given a posting matrix ,  is a hub if it appears at least  times
in the first  columns of . Hence,  is an outlier if the opposite is true:

Hub.
Instance  is at least the  neighbor of at least  other instances.

Outlier Detection using k-Nearest Neighbors Graph, Hautamaki et al. 49



Connectivity for popularity

Given a posting matrix ,  is an outlier if, on average, is not less than the 
neighbor of other instances:

𝟙

Popular.
Instance  is, on average, the  neighbor of other instances.
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Posting matrices and connectivity
Posting matrices only allow us to appreciate connectivity as the number of connections,
rather than their strength. If we were to superimpose a connectivity graph, this would
only measure how many steps to take to connect to instance, and not how long should
these steps be.
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Grading neighbors concentration
Connectivity and concentration can be
approximated through similar
structures: we go from postings matrix to
distance matrix!

To ease notation, we use a row-sorted
distance matrix , so that row  holds
increasing distances from instance .

A distance matrix  (top), and its row-sorted version 
(bottom). First column of s trimmed from .

52



Grading neighbors density: reach
An instance  has reach  if the 
nearest neighbor is at distance , and
average reach  if the average of

 is .

Our row-sorted distance matrix  is the
reach matrix of the data! Indeed, 
defines both reach and average reach.

The average reach defines an empirical
approximate concentration!  explicitly encodes reach (  itself) and average reach.
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Reach degrees: the reach ratio Factor
Assumption: Inliers have lower reach than their neighbors. We formalize this in a reach
ratio

which is  for pairs  with equal k-neighbors concentration, and  for instances
with different concentrations,  laying in a sparser area of the space.

  

Reach at different s: reach ratio factor averages ratios at different s for pairs of instances , .
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Reach degrees: Local Outlier Factor
Local outlier factor generalizes outlier factor by averaging the outlier factor over the
neighbors of an instance:

   

Neighbors at different : Local Outlier Factor respects the posting matrix. It creates clusters of neighbors.
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Reach degrees: Connectivity Outlier Factor
Connectivity outlier factor (COF) generalizes outlier factor by averaging the outlier
factor over the connected neighbors of an instance:

The connected neighbors of an instance  is recursively defined as the 1-nearest
neighbor to the last element in the chain.

   

Neighbors at different : Connectivity Outlier Factor does not respects the posting matrix. Rather, it creates chains of
neighbors.
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Reach degrees:  outlier factor
-NN outlier factor (kOF) replaces the average reach at  ( ) with the maximum reach at
 ( ):

   

Neighbors considered at different .

Efficient algorithms for mining outliers from large data sets, Ramaswamy et al. 57



Degrees of neighbors concentration
Reach degrees approximate space concentration with (inverse) reach. Rather than pick a

, we can swap in a more natural definition of concentration: instances found per unit of
space. Even better, instances found within an hypersphere  of a given radius , and
centered around .

Assumption: outliers have lower
concentration than their neighbors.

Instances, and some -hyperspheres centered on them.

 stands for ball, also often referred to as -ball. 58



Degrees of two-radii concentration
We compute concentration on a two-radii
approach:

concentration radius : determines the
hyperspheres  estimating
concentration  of  within a radius 

neighborhood radius : proportional to ,
determines the neighborhood  of  as the
instances laying within The two radii : the former is used to

estimate concentration, the latter to choose
which neighbors to compare concentration
against. Note:  may also be larger than !
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Degrees of two-radii concentration
Like reach-based concentration, degrees are defined on a basis of comparisons between
some degree of an instance, and its neighbors:

that is, two-radii concentration compares the concentration of an instance, with the
concentration of its neighbors. For

 neighbors have a much higher concentration

 neighbors have a much lower concentration

LOCI: Fast Outlier Detection Using the Local Correction Integral, Papadimitriou et al. 60



Thresholding connectivity factors
Unlike distributional approaches, connectivity factors rely on arbitrary densities and
distances, both of which are domain dependent and of unclear interpretation.
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Grading connectivity factors
Axis

Locality Local

Sensitivity Choice of neighborhood, connectivity parameter

Interpretability Partial: can inspect what instances lead to different reaches
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Fast neighborhood estimation
Neighbor approaches rely on expensive neighborhood functions, e.g., k-NN, and in turn
build anomaly degrees on the basis of different assumptions on said neighborhoods: the
neighborhoods determine the anomaly degree post-hoc through different cheap scoring
functions.

What if instead, we build simpler and faster neighborhoods?
Fei Tony Liu, Isolation Forest. 2008

63

http://rob.schapire.net/papers/strengthofweak.pdf


Fast neighborhood estimation
Wisdom of the crowd

Even if approximated, if I sample enough
neighborhoods of variable quality, on
aggregate I can achieve a representative
neighborhood.

Outlier degree

If neighborhood definitions induce an
outlier degree, then we can estimate the
outlier degree directly from the
neighborhoods.

Isolation Forest, Fei Tony Liu et al. 64



Neighborhoods as hyperplanes
Wisdom of the crowd

Random sampling on a distribution of
hyperplanes.

  

Outlier degree

The number of hyperplanes needed to
define the neighborhood.

Isolation Forest, Fei Tony Liu et al. 65



Isolation tree
An isolation tree  is a random tree which randomly
partitions the space into a set of blocks.

Splits are sampled randomly

Tree grows up to a predefined height, or until all
leaves contain one instance

Outlier degree .

Isolation Forest, Fei Tony Liu et al. 66



Isolation forest
An isolation forest  is comprised of several isolation trees,
further sampling the hyperplane space.

Outlier degree

Isolation Forest, Fei Tony Liu et al. 67



Grading with isolation forests
Axis

Locality Global and local

Sensitivity Dataset noise can be interpreted as outlier

Interpretability Yes! Splits induced by the tree, if the tree is univariate
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Modeling connections
Assumption
Outliers have a peculiar
neighborhood

Anomaly degree
Distance from
neighborhood

Thresholding
Distance from
neighborhood

Extremely flexible Sensitive to hyperparameters

Need to define a proper distance
function
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Finding outliers

Assumption: The data
distribution.

Thresholding: Critical
value.

Assumption: The manifold
family.

Thresholding: Distance to
the manifold.

Assumption: Distances
define anomalies.

Thresholding: Connection
to neighbors.
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Finding outliers
Data distribution

Natural and straightforward
definition

Strong theoretical background

Clear interpretation of the
scores 

Data manifold

Flexible and powerful

Data neighbors

Extremely flexible

Sensitivity to outliers

Sometimes unstable

Limited expressivity

Little interpretability of the
result

May be computationally
unstable

Strong manifold assumptions

Possibly uninterpretable results

Sensitive to hyperparameters

Need to define a proper
distance function
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Going meta: cluster approaches
We have studied clustering as a task aimed at discovering groups, which we can, in turn,
leverage to discover outliers!

Distributional approaches on separate clusters

Reach approaches based on clustering, rather than single instances

Connectivity approaches w.r.t. cluster centers, rather than other instances
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