Data Similarity

Anna Monreale Computer Science Department

Introduction to Data Mining, 2nd Edition Chapter 1

Similarity and Dissimilarity

• **Similarity**

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

• **Dissimilarity**

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- **Proximity refers to a similarity or dissimilarity**

Similarity/Dissimilarity for one Attribute

p and *q* are the attribute values for two data objects.

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

$$
d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}
$$

where *n* is the number of dimensions (attributes) and *x^k* and y_k are, respectively, the k^{th} attributes (components) or data objects **x** and **y**. Standardization is necessary, if scales differ.

Standardization is necessary, if scales differ.

Euclidean Distance

UNIVERSITÀ DI PISA

Distance Matrix

Minkowski Distance

• Minkowski Distance is a generalization of Euclidean **Distance**

$$
d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}
$$

Where *r* is a parameter, *n* is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^th attributes (components) or data objects *x* and *y*.

Minkowski Distance: Examples

- $r = 1$. City block (Manhattan, taxicab, L_1 norm) distance.
	- A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- *r* = 2. Euclidean distance
- $r \rightarrow \infty$. "supremum" ($L_{\rm max}$ norm, L_{∞} norm) distance.
	- This is the maximum difference between any component of the vectors
- Do not confuse *r* with *n*, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well-known properties.
	- 1. $d(x, y) \ge 0$ for all *x* and *y* and $d(x, y) = 0$ only if **x** *=* **y**. (Positive definiteness)
	- 2. $d(x, y) = d(y, x)$ for all **x** and **y**. (Symmetry)
	- *3.* $d(x, z) \leq d(x, y) + d(y, z)$ for all points x, y, and z. (Triangle Inequality)

where *d*(**x**, **y**) is the distance (dissimilarity) between points (data objects), **x** and **y**.

A distance that satisfies these properties is a metric

Common Properties of a Similarity

Similarities, also have some well-known properties.

- 1. $s(x, y) = 1$ (or maximum similarity) only if $x = y$.
- 2. $s(x, y) = s(y, x)$ for all **x** and **y**. (Symmetry)

where *s*(**x**, **y**) is the similarity between points (data objects), **x** and **y**.

Binary Data

Similarity Between Binary Vectors

- Common situation is that objects, *p* and *q*, have only binary attributes
- Compute similarities using the following quantities M_{01} = the number of attributes where p was 0 and q was 1 M_{10} = the number of attributes where p was 1 and q was 0 M_{00} = the number of attributes where p was 0 and q was 0 M_{11} = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients SMC = number of matches / number of attributes $=$ (M₁₁ + M₀₀) / (M₀₁ + M₁₀ + M₁₁ + M₀₀)
	- J = number of 11 matches / number of not-both-zero attributes values $=$ (M₁₁) / (M₀₁ + M₁₀ + M₁₁)

SMC versus Jaccard: Example

p = 1 0 0 0 0 0 0 0 0 0 *q* = 0 0 0 0 0 0 1 0 0 1

 M_{01} = 2 (the number of attributes where p was 0 and q was 1) M_{10} = 1 (the number of attributes where p was 1 and q was 0) M_{00} = 7 (the number of attributes where p was 0 and q was 0) M_{11} = 0 (the number of attributes where p was 1 and q was 1)

$$
SMC = (M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7
$$

$$
J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0
$$

Document Data

Cosine Similarity

• If d_1 and d_2 are two document vectors, then cos(d_1 , d_2) = ($d_1 \bullet d_2$) / $||d_1||$ $||d_2||$

where • indicates vector dot product and || *d* || is the length of vector *d*.

• Example:

d¹ **= 3 2 0 5 0 0 0 2 0 0** *d²* **= 1 0 0 0 0 0 0 1 0 2**

d1 • *d2*= 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 ||*d¹* || = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)**0.5** = (42) **0.5** = 6.481 ||*d²* || = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) **0.5** = (6) **0.5** = 2.245

cos(*d¹ , d2*) = .3150

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
	- Use non-negative weights ω_k

$$
- similarity(\mathbf{x}, \mathbf{y}) = \frac{\sum_{k=1}^{n} \omega_k \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \omega_k \delta_k}
$$

• Can also define a weighted form of distance

$$
d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} w_k |x_k - y_k|^r\right)^{1/r}
$$

Correlation

- Correlation measures the linear relationship between objects (binary or continuous)
- To compute correlation, we standardize data objects, p and q, and then take their dot product (covariance/standard deviation)

$$
corr(\mathbf{x}, \mathbf{y}) = \frac{covariance(\mathbf{x}, \mathbf{y})}{standard_deviation(\mathbf{x}) * standard_deviation(\mathbf{y})} = \frac{s_{xy}}{s_x \ s_y},
$$

Visually Evaluating Correlation

Scatter plots showing the similarity from –1 to 1.

Information and Probability

- Information relates to possible outcomes of an event
	- transmission of a message, flip of a coin, or measurement of a piece of data

- The more certain an outcome, the less information that it contains and vice-versa
	- For example, if a coin has two heads, then an outcome of heads provides no information
	- More quantitatively, **the information is related to the probability of an outcome**
		- **The smaller the probability** of an outcome, **the more information** it provides and vice-versa
	- Entropy is the commonly used measure

Entropy

- For
	- a variable (event), *X*,
	- $-$ with *n* possible values (outcomes), $x_1, x_2, ..., x_n$
	- $-$ each outcome having probability, $p_1, p_2, ..., p_n$
	- $-$ the entropy of X, $H(X)$, is given by

$$
H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i
$$

- Entropy is between 0 and $\log_2 n$ and is measured in bits
	- Thus, entropy is a measure of how many bits it takes to represent an observation of *X* on average

Entropy Examples

• For a coin with probability *p* of heads and probability $q = 1 - p$ of tails

$$
H = -p \log_2 p - q \log_2 q
$$

 $-$ For $p= 0.5$, $q= 0.5$ (fair coin) $H=1$

$$
-
$$
 For $p = 1$ or $q = 1$, $H = 0$

Entropy for Sample Data

- Suppose we have
	- a number of observations (*m*) of some attribute, *X*, e.g., the hair color of students in the class,
	- where there are *n* different possible values
	- $-$ And the number of observation in the i^{th} category is m_i
	- Then, for this sample

$$
H(X) = -\sum_{i=1}^{n} \frac{m_i}{m} \log_2 \frac{m_i}{m}
$$

Mutual Information

• Information one variable provides about another

Formally, $I(X, Y) = H(X) + H(Y) - H(X, Y)$, where

H(X,Y) is the joint entropy of *X* and Y,

$$
H(X,Y) = -\sum_{i} \sum_{j} p_{ij} \log_2 p_{ij}
$$

Where p_{ij} is the probability that the $i^{\sf th}$ value of X and the $j^{\sf th}$ value of Y occur together

- For discrete variables, this is easy to compute
- Maximum mutual information for discrete variables is $\log_2(\text{min}(\;n_X, n_Y\,)),$ where $n_X\left(n_Y\right)$ is the number of values of $X\left(Y\right)$

Mutual Information Example

Mutual information of Student Status and Grade = 0.9928 + 1.4406 - 2.2710 = 0.1624

