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SVM

* This technique has its roots in statistical learning

* Promising results in different applications
 Text classification, handwritten digit recognition

* Works very well with high-dimensional data

* Represents the decision bourndary by a subset of training examples
* Support vectors



Linear Separators

* Binary classification can be viewed
as the task of separating classes in
feature space

* Find a linear hyperplane (decision
boundary) that separates the data.




Maximum Margin Hyperplanes

* One possible solution.
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Linear Separators

* Another possible solution.
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Linear Separators

* Other possible solutions.
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Linear Separators

* Let’s focus on B; and B,.
* Which one is better?
* How do you define better?
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Support Vector Machine (SVM)

* SVM represents the decision boundary using a subset of the
training examples, known as the support vectors.

* SVM is based on the concept of maximal margin hyperplane



Classification Margin

* Decision Boundary is associated to 2
hyperplanes obtained by super vectors

* Examples closest to the hyperplane are
support vectors.

* Margin d of the separator is the
distance between support vectors.

decision boundary
wex+b=0
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Linear SVM: Separable Case Wei+b=+tl
B, i /
* Alinear SVM is a classifier that searches for
a hyperplane with the largest margin (a.k.a. O O
maximal margin classifier). / O
decision boundarV
* wand b are parameters. wex+b=0 / L Ao
o F | ®
wex+b=-1 -
O
O
e Given w and b the classifier works as =
(F) = 1 if wexX+b>1 B
VTSl ifwex+b<—1 - -
Margin = é
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Maximum Margin Hyperplanes

* The best solution is the hyperplane O
that maximizes the margin. .0 ®
* Thus, B, is better than B,. | " ?
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Learning a Linear SVM

* Learning the model is equivalent to determining w and b.

* How to find wand b?
* Objective is to maximize the margin by minimizing L(w) =
* Subject to the following constraints
1 if weX. +b>1
Vi :{—1 if WeX, +b<—1
* This is a constrained optimization problem: a Quadratic
optimization problem, a well-known class of mathematical

programming problem, and many algorithms exist for solving them
(with many special ones built for SVMs)
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Linear SVM: Nonseparable Case

* What if the problem is not

linearly separable?




Slack Variables

* The inequality constraints must be
relaxed to accommodate the nonlinearly
separable data.

* This is done introducinﬁ slack variables ¢
into the constrains of the optimization

problem
I ifwex +bX1-&
Tl ifwex, +b<Clr e

* ¢ provides an estimate of the error of the
decision boundary on the misclassified
training examples.
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Learning a Nonseparable Linear SVM
Lt “’@ 5)
{ 1 ifwex +bx0-&

* Objective to minimize L(w) =

e Subject to to the constraints

Vi = h = -
-1 1fwoxi+b£
* where Cand k are user-specified Cis a regularization parameter and
parameters representing the allows to control overfitting:
per-1a.|ty C_)f misclassifying the  small C allows constraints to be easily

* large C makes constraints hard to
ignore - narrow margin

e C=ooenforces all constraints: hard
margin




Nonlinear SVM

* What if the decision boundary is not

linear?

if /(21 —0.5)? 4+ (29 — 0.5)? > 0.4

, ,, 1
1y (‘ r.r9) = .
—1 otherwise
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Nonlinear SVM

* The trick is to transform the data
from its original space x into a new
space ®(x) so that a linear decision
boundary can be used.
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2 2 F= o= N
wyry + w3rs + wov2ry + wiV2xs + wo =0.

* Decision boundary we®d(x¥)+b=0
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