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o Last Lecture Refresher

Inference as Message Passing

How to infer the distribution P(X,nx|Xops) of @ number of
random variables X« in the graphical model, given the
observed values of other variables Xps

@ Exact inference
e Passing (vectors of
information) on the structure of
the graphical model following a

e Works for chains, trees and can
Directed and undirected be used in (some) graphs
models of @ Approximated inference can use
approximations of the distribution
( ) or can estimate its
expectation using examples

( )



Introduction

Lecture Plan

Today’s Lecture

@ Exact inference on a with
variables

@ A probabilistic model for sequences:
(HMMs)

@ Using inference to : the Expectation-Maximization
algorithm for HMMs

@ Graphical models with : Dynamic
Bayesian Networks

@ Application examples



Introduction

Lecture Plan

Sequences

O SR OSCERN O

@ A sequencey is a collection of observations y; where t

represent the according to a
(complete) order (e.g. )
@ Reference population is a set of i.i.d sequences y',...,y"N
@ Different sequences y e 7yN generally have

T, TN
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Lecture Plan

Sequences in Speech Processing

and the winner is
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Sequences in Biology

Ramachandran
Plot

[Boomsma et al. 08]

multimodal non-Euclidean data

Amino-acid
sequence
variables

Angular
variables



Generative models for sequences
Hidden Markov Models

Markov Chain

First-Order Markov Chain

Directed graphical model for sequences s.t. element X; only
depends on its predecessor in the sequence

P(X:[X:-1)

O DD —®

@ Joint probability as
;
P(X) = P(X,...,Xr) = P(Xy) [ ] P(Xi|X—1)
t=2
@ P(Xi|X;_1) is the ; P(X1) is the

@ General form: an is such that X;
depends on L predecessors



Generative models for sequences
Hidden Markov Models

Observed Markov Chains

Can we use a Markov chain to model the relationship between
observed elements in a sequence?

Of course yes, but...

O

Does it make sense to represent P(is|cat)?



Generative models for sequences
Hidden Markov Models

Hidden Markov Model (HMM) (1)

Stochastic process where transition dynamics is disentangled
from observations generated by the process

OXORO

@ Siate transition is an unobserved (hidden/latent) process
characterized by the hidden state variables S
e S; are often discrete with value in {1,..., C}
e Multinomial state transition and prior probability
(stationariety assumption)

A,‘j = P(St = i|St—1 :./) and m; = P(St = I)



Generative models for sequences
Hidden Markov Models

Hidden Markov Model (HMM) (II)

Stochastic process where transition dynamics is disentangled
from observations generated by the process

@ Observations are generated by the emission distribution

bi(yt) = P(Yr = y1|St = i)



Generative models for sequences
Hidden Markov Models

HMM Joint Probability Factorization

Discrete-state HMMs are by 6 = (m, A, B) and
the C

@ State transition and prior distribution A and =

@ Emission distribution B (or its parameters)

6666 &

P(Y=y)=) P(Y=y,S=s)

> {P(81 =51)P(Y: = y1|S1 = s1)
S1,...,ST
.
[1P(St = st1Si—1 = s1-1)P(Y: = yi| St = St)}
=2



Generative models for sequences
Hidden Markov Models

HMMs as a Recursive Model

A graphical framework describing
by both probabilistic and neural models

@ Indicates that the hidden state S; at
time t is dependent on
from
@ The previous time step s~
o Two time steps earlier s=2
o ...

1

: !; 'S-l
@ When applying the recursive model to a
sequence ( ), it generates the
52 sl

corresponding




Generative models for sequences
Hidden Markov Models Learning and Inference in HMM
Max-Product Inference in HMM

3 Notable Inference Problems

Definition (Smoothing)

Given a model # and an observed sequence y, determine the

A,

Definition (Learning)

Given a dataset of N observed sequences D = {y',...,yM}
and the number of hidden states C,

that maximize the probability of model 6 = {r, A, B}
having generated the sequences in D

\

Definition (Optimal State Assignment)

Given a model 6 and an observed sequence vy, find an
s = sj, ..., st for the hidden Markov chain

N




Hidden Markov Models Learning and Inference in HMM

Forward-Backward Algorithm

- How do we determine the posterior P(S; = ily)?
Exploit factorization
P(St = ily) xP(St = i,y) = P(St = i,Y1.t, Yei1.7)
= P(St = i,Y1.)P(Yt11.71St = 1) = a(i) B:(V)

a-term computed as part of (a1 (i) = bi(y1)m))

C
ar(i) = P(St =i, Y1) = bi(y1) > _ Ajeri—1())
j=1

(S-term computed as part of (Br(i) =1,Vi)

c
B() = P(Yesr:71Se = ) = D bi(Yes1)Beet (DA;

i=1



Hidden Markov Models Learning and Inference in HMM

Doesn’t the look strangely
familiar?

ﬂa(Xn 1) #a(Xn) #,&( w+1)
O - T

@ at = pa(Xn) — forward message
pa(Xn) = Z¢ n—1> Xn) fta(Xn—1)
H/—’ X —_——— — —

o (f) n—1 bl(Yt)A// ar—1(f)
2;3—1

@ (3t = pp(Xn) — backward message
115(Xn) = Z U(Xn, Xni1) p18(Xni1)
H/—/ S—— N——

B() ﬁj_‘, bi(yes)Aj  Bra(i)
e,



Hidden Markov Models Learning and Inference in HMM

Learning in HMM
Learning HMM parameters 6 = (, A, B) by

N
£(9) =log [ P(Y"|6)

n=1
N Th
=log [T¢ > P(SHP(YISH T P(STISE1)P(Y]IS])
n=1 sf,...,s’}n t=2

@ How can we deal with the unobserved random variables S;
and the nasty summation in the log?
@ Expectation-Maximization algorithm
e Maximization of the Lc(0)
o Completed with

n _ J 1if n-th chain is in state / at time ¢
i 0 otherwise



Hidden Markov Models Learning and Inference in HMM

Complete HMM Likelihood

Introduce indicator variables in £(6) together with model
parameters 6 = (w, A, B)

N c
Lo() =log P(X, Z|0) =log ] | {H [P(S] = )P(Y{|S] = D]

n=1 \j=1

H H P(SP = ISPy = )5 - P(Y{| S = ,)z,,}

t=2ij=1

N
Z{Zzﬂlogw,-i-zz;,z(t 9 IogA,,—l—ZZzt,logb, }

n=1 = t=2 ij=1 t=1 i=1



Hidden Markov Models Learning and Inference in HMM

Expectation-Maximization

A 2-step iterative algorithm for the maximization of
L¢(0) w.r.t. model parameters 6

E-Step: Given the current estimate of the model
parameters 6(!), compute

Q(t+1)(g|9(t)) = EZ|X,9(0 [log P(X, Z|6)]
M-Step: Find the new estimate of the model parameters
o(+1) = argmax QU+ (9])
0

lterate 2 steps until |£c(0)" — £c(0)""| < € (or stop if maximum
number of iterations is reached)



Hidden Markov Models Learning and Inference in HMM

Compute the expected value expectation of the complete
log-likelihood assuming (estimated)
0! = (n!, Al, BY) fixed at time t (i.e. )

Q916" = Ez x gwllog P(X, Z16)]
Expectation w.r.t a (discrete) random variable z is
EfZ]=) z-P(Z=2)
z
To compute the conditional expectation QU+ (9|6(™) for the
complete HMM log-likelihood we need to estimate

Ez v ow(zi] = P(St = ily)
Ez v owlzizi—1y] = P(St =1, St—1 = J|Y)



Hidden Markov Models Learning and Inference in HMM

We know how to compute the posteriors by the
forward-backward algorithm!

Y — P(S, — /1Y) — at(1)Bi(7)
Yt(f) = P(St = i[Y) —Z,-C:1 e i)540)

at—1(f)Aibi(ye) B (V)
S5 11 a1 (M) Ambi(y)Bi()

'Yt,t—1(i7j) = P(St =1, 51 =f|Y) =



Hidden Markov Models Learning and Inference in HMM

Solve the

9(+1) = argmax QU+ (g|6®)
0
using the information computed at the E-Step (the posteriors).

As usual
8Q(t+1)(9|0(t))

00

where 6 = (w, A, B) are now variables.

Parameters can be distributions = need to preserve
sum-to-one constraints ( )




Hidden Markov Models Learning and Inference in HMM

M-Step (Il)

State distributions

Zg:1 Zthnz Vet—1(0:]) Zg:1 71 (1)
AI] = N Tn n ; and T = T
Zn:1 Zt:Z ’Yt_1 (f)
Emission distribution (multinomial)
Zn 1 Zt 177Nyt = K)
S Zt 177 (0)

where §(-) is the indicator function for emission symbols k

By =




Hidden Markov Models
Max-Product Inference in HMM

Decoding Problem

@ Find the s=57,...,8T
for an observed sequence y given a trained HMM
@ No unique interpretation of the problem

o Identify the st that maximize the
posterior

veey

e Find the most likely

s* =arg max P(Y,S =s)

@ The last problem is addressed by the



Hidden Markov Models

Viterbi Algorithm

Max-Product Inference in HMM

An efficient algorithm based on a

An example of a algorithm )

Recursive backward term
€t—1(St—1) = max P(Yi|St = st)P(St = st|St—1 = St—1)et(st),
Root optimal state
sy = arg max P(Y:|S1 = s)P(S1 = s1)e1(8).
Recursive forward optimal state

s; = arg max P(Y:|St = s)P(St = s|Si—1 = S;_q)et(S).



Applications

Wrap-Up

Input-Output Hidden Markov Models

LM

@ Translate an input sequence into an output sequence
( )

@ State transition and emissions depend on input
observations ( )

@ Recursive model highlights analogy with
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Wrap-Up

Bidirectional Input-driven Models

Remove that current observation does
not depend on the future and that an
state transition is not dependent on the position in the
sequence

@ Structure and function of a
region of DNA and protein
sequences may depend on
upstream and downstream
information

@ Hidden state transition
distribution changes with
the amino-acid sequence
being fed in input
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Wrap-Up

Coupled HMM

Describing whose observations follow
different dynamics while the underlying generative processes
are interlaced

i
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Dynamic Bayesian Networks
Wrap-Up

Dynamic Bayesian Networks

HMMs are a specific case of a class of directed models that
represent and data with

-®

Structure changing information
Hierarchical HMM

Dynamic Bayesian Networks (DBN)

Graphical models whose structure changes to represent
evolution across time and/or between different samples




Wrap-Up Conclusion

Take Home Messages

@ Hidden Markov Models
o Hidden states used to realize an

o A where selection of the next component is
regulated by the transition distribution
e Hidden states on

subsequences in the data
@ Inference in HMMS

° - Hidden state posterior estimation
° - HMM parameter learning
° - Most likely hidden state sequence

@ Dynamic Bayesian Networks

e A graphical to reflect
information with variable size and connectivity patterns
e Suitable for modeling (sequences, tree, ...)
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