
Introduction
Exact Inference

Approximate Inference

Inference in Graphical Models

Davide Bacciu

Dipartimento di Informatica
Università di Pisa
bacciu@di.unipi.it

Machine Learning: Neural Networks and Advanced Models
(AA2)

Introduction
Exact Inference

Approximate Inference

Last Lecture Refresher
Lecture Plan

Directed and Undirected Graphical Models

Represent asymmetric (directed) or
symmetric (undirected) relationships between
random variables
Directed Bayesian Networks decompose joint
probability as a product of local conditional
probabilities

P(X) =
N∏

i=1

P(Xi |pa(Xi))

Undirected Markov Networks decompose joint
probability as a product of clique potentials

P(X) =
1
Z

∏
C

ψ(XC)

Introduction
Exact Inference

Approximate Inference

Last Lecture Refresher
Lecture Plan

The Inference Problem

General problem - How to infer the distribution P(Xunk |Xobs) of
a number of random variables Xunk in the graphical model,
given the observed values of other variables Xobs

Classical inference problems
How to query (predict with) a graphical
model?
Probability of unknown X given
observations d, P(X |d)
Determine most likely hypothesis

Inference algorithms are fundamental also to address learning
in graphical models

Introduction
Exact Inference

Approximate Inference

Last Lecture Refresher
Lecture Plan

Complexity of Inference

Exact inference of the distribution P(Xunk |Xobs) is NP-hard for a
general graphical model

Efficient inference procedure can be defined for particular
families of graphical models

Exact inference over chains and trees
Key idea: variable elimination and message passing on the
structure of the graph

Other families of graphical models require the design of
efficient approximate inference algorithms

Variational algorithms
Sampling methods

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Exact Inference - A Naive Approach

Consider the simple inference problem of computing P(X4)

Obtain distribution by marginalization

P(X4) =
∑
X1

∑
X2

∑
X3

P(X1,X2,X3,X4)

Using the conditional independence assumptions in the model

P(X4) =
∑
X1

∑
X2

∑
X3

P(X1)P(X2|X1)P(X3|X2)P(X4|X3)

Naive approach as needs summation over an exponential
number of terms

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Key Idea - Variable Elimination

What if we re-arrange the order of terms and summations?

P(X4) =
∑
X1

∑
X2

∑
X3

P(X1)P(X2|X1)P(X3|X2)P(X4|X3)

=
∑
X2

∑
X3

P(X3|X2)P(X4|X3)

∑
X1

P(X1)P(X2|X1)


Note that

∑
X1

P(X1)P(X2|X1) =
∑
X1

P(X1,X2) = P(X2) We can

eliminate one variable at the time with a local cost

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Generic Inference on an Undirected Chain

Consider the general case of an undirected chain

with joint distribution

P(X) =
1
Z

∏
C

ψ(XC)

=
1
Z
ψ(X1,X2)ψ(X2,X3) . . . ψ(XN−1,XN)

How do we infer P(Xn)?

P(Xn) =
∑
X1

· · ·
∑
Xn−1

∑
Xn+1

· · ·
∑
XN

P(X)

We do a bit of rearrangements of sum and products to avoid
exponential summations

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Step 1 - Variable Elimination

Choose a target for elimination

Bring XN summation close to the product terms that contains it∑
XN

ψ(XN−1,XN)

Same thing can be done for X1∑
X1

ψ(X1,X2)

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Step 2 - Re-arrange Summations

Exploit the idea of variable elimination to group potentials and
summations

P(Xn) =
1
Z∑

Xn−1

ψ(Xn−1,Xn) . . .

∑
X2

ψ(X2,X3)

∑
X1

ψ(X1,X2)


︸ ︷︷ ︸

µα(Xn)∑
Xn+1

ψ(Xn,Xn+1) . . .

∑
XN

ψ(XN−1,XN)


︸ ︷︷ ︸

µβ(Xn)

=
1
Z
µα(Xn)µβ(Xn)

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Step 3 - Message Passing

P(xn) is efficiently computed by passing local messages on the
graph

µα(Xn)→ forward message
µβ(Xn)→ backward message

Messages are computed recursively

µα(Xn) =
∑
Xn−1

ψ(Xn−1,Xn)µα(Xn−1)

µβ(Xn) =
∑
Xn+1

ψ(Xn,Xn+1)µβ(Xn+1)

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Computational complexity

Consider each Xn to be a discrete RV taking K values
Local messages µα(Xn) and µβ(Xn) are K -dimensional
vectors
Computing the local messages is a matrix-vector
multiplication with sizes K 2 and K ⇒ O(K 2)

Local messages are computed for N − 1 variables, so the
total complexity is

O(N · K 2)

What about the normalization term Z? O(K)

P(Xn) =
1
Z
µα(Xn)µβ(Xn) =

µα(Xn)µβ(Xn)∑
Xn
µα(Xn)µβ(Xn)

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Observations

What if we want to compute P(Xn) for all n ∈ [1,N]?
Easy because for different n we will re-use the same local
messages

What if a node Xn′ is observed?
It only means we don’t have to perform the summation∑
Xn′

(·) because we know the value of Xn′

How do we compute a joint probability P(Xn,Xn+1)?
Similar to the single node case
Local message passing until we reach the target nodes,
which are not summed out

P(Xn,Xn+1) =
1
Z
µα(Xn)ψ(Xn,Xn+1)µβ(Xn+1)

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Inference on a Tree

How we generalize inference when the graph structure is
more complex than a chain?
Difficult problem in general, but we can solve it if the
structure is a tree
Undirected tree

A graph where there is exactly one path between any pair
of nodes
No loops

Directed tree
A graph where there is exactly one node with no parents
while all other nodes have a single parent
The corresponding moral graph will be an undirected tree

First we introduce a graphical representation that makes
notation easier

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Factor Graphs

Yet another way to represent how the joint probability of a set of
variables factorizes into a product of functions fC defined over
subsets C of the variables

P(X1,X2,X3) = fa(X1,X2)fb(X1,X2)

fc(X2,X3)fd(X3)

Random variables Xn are circular nodes
Factors fC are functions of the variables Xn and are
denoted as square nodes
Edges connect a factor to the variables they are functions
of, e.g. fa(X1,X2)

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

From Graphical Models to Factor Graphs
Directed Models

Both factor graphs represent the same distribution, but
factorized differently

P(X1,X2,X3) = f (X1,X2,X3)

P(X1,X2,X3) = fa(X1)fb(X1,X2,X3)fc(X3)

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

From Graphical Models to Factor Graphs
Undirected Models

ψ(X1,X2,X3) = f (X1,X2,X3)

ψ(X1,X2,X3) = fa(X1,X2,X3)fb(X2,X3)

Notice how the loop in the undirected model disappears in the
second factor graph

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Sum-Product Algorithm

A powerful class of efficient, exact inference algorithms for
(directed/undirected) tree-structured models
Use factor graph representation to provide a unique
algorithm for directed/undirected models
Assume all random variables are discrete and hidden
We begin by computing the marginal P(X) for one
particular node X of the graph

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Sum-Product Algorithm
Overview

The marginal for a single node X is

P(X) =
∑
X\X

P(X)

where X \ X is the set of all variables except X
Factorize the joint probability P(X) using the graph
factorization

P(X) =
∑
X\X

∏
s

fs(Xs)

Re-arrange sum-products to optimize computation

P(X) =
∏

s

∑
Xs∈X\X

fs(Xs)

We efficiently due this by message passing on the factor graph

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Sum-Product Algorithm
Factor to Variable Messages (I)

Using the structure of the factor graph locally to X we can
express the marginal as

P(X) =
∏

s∈ne(X)

∑
Xs

Fs(X ,Xs)


ne(X) set of factor nodes fs neighbor of X
Xs variable nodes connected to X via fs

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Sum-Product Algorithm
Factor to Variable Messages (II)

Using the structure of the factor graph locally to X we can
express the marginal as

P(X) =
∏

s∈ne(X)

∑
Xs

Fs(X ,Xs)

 =
∏

s∈ne(X)

µfs→x(X)

Fs(X ,Xs) product of all factors in Xs reaching factor fs
µfs→x(X) message from factor fs to variable X

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Sum-Product Algorithm
Variable to Factor Messages (I)

How do we compute Fs(X ,Xs)?

Fs can be factorized using the variables Xm it depends on

Fs(X ,Xs) = fs(X ,X1, . . . ,XM)︸ ︷︷ ︸
local information

G1(X1,Xs1), . . . ,G1(XM ,XsM)︸ ︷︷ ︸
information from children m

µfs→x(X) =
∑
Xs

Fs(X ,Xs)

µfs→x(X) =
∑
X1

· · ·
∑
XM

fs(X ,X1, . . . ,XM)
∏

m∈ne(fs)\X

µXm→fs (Xm)︷ ︸︸ ︷∑
Xsm

Gm(Xm,Xsm)



Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Sum-Product Algorithm
Variable to Factor Messages (II)

µfs→x(X) =
∑
X1

· · ·
∑
XM

fs(X ,X1, . . . ,XM)
∏

m∈ne(fs)\X

µXm→fs(Xm)

How do we compute Gm(Xm,Xsm)?

Gm(Xm,Xsm) =
∏

l∈ne(Xm)\fs

Fl(Xm,Xml)

µXm→fs(Xm) =
∏

l∈ne(Xm)\fs

∑
Xml

Fl(Xm,Xml)


=

∏
l∈ne(Xm)\fs

µfl→Xm(Xm)

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Sum-Product Algorithm
Summary (I)

To compute P(Xi) for a given variable Xi using the sum-product
algorithm

Pick Xi as the root of the
sum-product recursion (i.e.
destination of the messages)
Begin computing messages at
the leaves

Leaf = factor µf→X = f (X)
Leaf = variable µX→f = 1

Recursively compute the µf→X
and µX→f messages from the
leaves until the root is reached

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Sum-Product Algorithm
Summary (II)

What if we want to compute P(X) for all variables?

Pick a node as root
and propagate
messages as before

Once root has
received all
information,
propagate
messages from root
to the leaves

The number of messages needed is 2 · |E | where |E | is the
number of edges in the factor graph

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Observations

The marginal P(Xs) of the variables Xs linked to a factor fs
can be computed as

P(Xs) = fs(Xs)
∏
i∈fs

µXi→fs(Xi)

Normalization
If the factor graph derives from a directed model, the
marginals are already normalized
If derives from an undirected model, we compute the
un-normalized marginals P(X) for each X and normalize
each marginal separately

Computing marginal P(X |Xe) given observed variables Xe
Perform sums in messages only for unobserved variables
Xu
Given an observed variables Xe = xe with value xe, keep
only the summation term corresponding to xe (set the rest
to 0)

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Max-Product Inference

Sum-Product Algorithm

Efficiently computes a marginal distribution P(X) from a joint
distribution expressed as a factor graph

Another relevant problem in probabilistic models is to determine
the most likely assignment of unobserved variables

x∗ = arg max
x

P(X = x)

Max-Product Algorithm

A class of efficient algorithms for finding the x∗ assignment
maximizing the joint distribution P(X)

We will see an example of this algorithms in Hidden Markov
Models

Introduction
Exact Inference

Approximate Inference

Inference on a Chain
Inference on a Tree

Exact Inference in General Graphs

General graphs have loops which lead to messages
circling forever
Can restructure the graph to obtain a tree-like structure
representing the same factorization and perform message
passing on it (junction tree algorithm)
Key idea is to triangulate the undirected graph and build a
join tree whose nodes are the maximal cliques in the
triangulated graph
The junction tree is a maximum spanning tree condensing
edges and nodes

Subset cliques are absorbed into larger ones
Edges are labeled by the maximum number of variables
shared between cliques

Computational complexity depends on number of variables in
the largest clique (e.g. exponential for discrete variables)

Introduction
Exact Inference

Approximate Inference

Variational Inference
Sampling
Conclusion

Approximate Inference in General Graphs

Computational complexity of exact inference can become
unfeasible
Approximate inference algorithms

Loopy belief propagation - Treat graphs as trees using
sum-product algorithm and a smart message scheduler to
handle message loops
Variational Methods - Find an analytical approximation of
the inference problem that simplifies computational
complexity (relaxation of conditional independence
relationships)
Sampling (Stochastic) Methods - Estimate the sought
expectation by sampling from the probability distributions in
the graph

Introduction
Exact Inference

Approximate Inference

Variational Inference
Sampling
Conclusion

Variational Inference

Loops cause problems to exact inference on original
distribution Q
Variational inference approximates P with a distribution Q
corresponding to a simpler graph (tree or simpler)

How do I choose the Q approximation?
The distribution Q which approximates P more closely
The simplest distribution Q (less parameters)

Introduction
Exact Inference

Approximate Inference

Variational Inference
Sampling
Conclusion

Measuring Goodness of Approximation

Kullback-Leibler Divergence - A measure of difference between
distributions

DL(Q‖P) =
∑

x

Q(x) ln
Q(x)
P(x)

or
∫ +∞

−∞
Q(x) ln

Q(x)
P(x)

dx

Can use it to find the best parameters θ∗ of the approximation
Q(θ)

θ∗ = arg min
θ

DL(Q(θ)‖P)

Variational algorithms are typically iterative
Compute the factor functions in the approximated graph
Estimate Q from the factors
Iterate until Q does not change much between iterations

Introduction
Exact Inference

Approximate Inference

Variational Inference
Sampling
Conclusion

Sampling-based Inference

Key Idea - Approximate the expectation of a complex
distribution by drawing enough samples from a sufficiently
simple distribution (exploiting conditional independence for
efficiency)

Sample the local potentials functions/conditional probabilities
instead of the joint distribution

Gibbs sampling - Sample variables conditioned on their
Markov blanket

Introduction
Exact Inference

Approximate Inference

Variational Inference
Sampling
Conclusion

Take Home Messages

Exact inference
Passing messages (vectors of information) on the structure
of the graphical model following a propagation direction
A node receives messages from all predecessors (in the
propagation order), applies sum-product operation and
send out a compact message

Exact inference is affordable only in certain structures
Sum-product and max-product on chains and trees
Junction tree on graphs with small cliques

Approximate inference on general graphs
Variational methods: approximate distribution with a simpler
one
Sampling methods: draw as many instances as needed to
estimate the distribution expectation

Introduction
Exact Inference

Approximate Inference

Variational Inference
Sampling
Conclusion

Next Lecture

A probabilistic model for sequences: Hidden Markov
Models (HMMs)
An example of sum-product inference
Expectation-Maximization algorithm for HMMs parameter
learning
Graphical models with varying structure: Dynamic
Bayesian Networks

	Introduction
	Last Lecture Refresher
	Lecture Plan

	Exact Inference
	Inference on a Chain
	Inference on a Tree

	Approximate Inference
	Variational Inference
	Sampling
	Conclusion

