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IR M Last Lecture Refresher

Directed and Undirected Graphical Models

@ Represent asymmetric (directed) or
symmetric (undirected) relationships between
random variables

@ Directed decompose joint
probability as a product of

N

P(X) = [ ] P(Xilpa(Xy))
i=1

@ Undirected decompose joint
probability as a product of

P(X) = 2 [T v(Xo)
C



Introduction

Lecture Plan

The Inference Problem

- How to infer the distribution P(Xynk|Xops) Of
a number of random variables X, .« in the graphical model,
given the observed values of other variables Xyps

Classical inference problems
@ How to (predict with) a graphical
model?
{\ @4 @ Probability of unknown X given
observations d, P(X|d)
@ /. @ Determine most likely

algorithms are fundamental also to
in graphical models




Introduction

Lecture Plan

Complexity of Inference

of the distribution P(Xynk|Xops) is for a
general graphical model J

@ Efficient inference procedure can be defined for particular
families of graphical models
° over chains and trees
o Key idea: and on the
structure of the graph
@ Other families of graphical models require the design of
efficient algorithms

e Variational algorithms
e Sampling methods



Exact Inference

Exact Inference - A Naive Approach

Consider the simple inference problem of computing P(X4)

©O—=®—=®—®

Obtain distribution by marginalization

P(Xa) =D > > P(X1, X, Xa, Xa)

X X2 X
Using the in the model
P(Xa) =D D> P(X1)P(Xal X1) P(Xs| X2) P(Xa| X3)
X Xo Xa

Naive approach as needs summation over an exponential
number of terms

J




Exact Inference

Key Idea - Variable Elimination
=)
(X2)

What if we re-arrange the order of terms and summations?

=333 POX4)P(Xe | X1) P(X| X2) P(Xa| Xa)

X1 Xo Xs
=33 P(Xs| X2) P(Xa| Xs) (Z P(X1)P(Xz| X ))
Xo X3 X

Note that >~ P(X;)P(X2|X1) = Y~ P(Xi, Xz) = P(Xz) We can

of& variable at the time With a local cost



Inference on a Chain
Exact Inference

Generic Inference on an Undirected Chain

Consider the general case of an

OO0 OO0

with
X) = - [T w(Xo)
C

1
= Z9(X1, X)¥(X2, Xa) - - ¥(Xi—1, Xi)
How do we infer P(X,)?

POG) =D 2 > - ZF’

X Xn—1 Xni1

We do a bit of to avoid
exponential summations J




Inference on a Chain
Exact Inference

Step 1 - Variable Elimination

Choose a target for elimination

OO0

Bring Xy summation close to the product terms that contains it

> p(Xn-1, Xn)

Xn

Same thing can be done for X;

DX, Xe)

Xi



Inference on a Chain
Exact Inference

Step 2 - Re-arrange Summations

Exploit the idea of variable elimination to

POG) = 5
(X1, Xn) oo [ D (e, Xa) | D (X, Xe)
| Xn—1 | X2 Xi

-~

Ho (Xn)

Z ¢(Xna Xn+1) cee Z¢(XN_1 ) XN)

Xnt1 L Xn

NB&H)

= ZhaXas(X0)




Inference on a Chain
Exact Inference

Step 3 - Message Passing

ﬂa(&;) ua(X_ﬂ)> P (,U_;;(Xnﬂ)

P(x») is efficiently computed by on the
graph

@ 1q(Xn) — forward message

@ 13(Xn) — backward message
Messages are computed

pa(Xn) = Z U(Xn—1, Xn)pa(Xn-1)

Xn—1

ps(Xn) = > (X, Xn1)ip(Xng1)
Xn+1



Inference on a Chain
Exact Inference

Computational complexity

Consider each X, to be a discrete RV taking K values
@ Local ta(Xn) and pg(Xy) are

@ Computing the local messages is a
with sizes K2 and K = O(K?)

@ Local messages are computed for N — 1 variables, so the
is
O(N - K?)

What about the normalization term Z?

B _ a(Xn)pp(Xp)
P(X,) = Zﬂa(xn)ﬂﬁ(xf') > x, Ha(Xn)ps(Xn)



Inference on a Chain
Exact Inference

Observations

@ What if we want to compute P(Xj,) for all n € [1, N]?
e Easy because for different n we will

@ What if a node X, is ?
e It only means we don’t have to perform the summation

> () because we know the value of Xy
an
@ How do we compute a P(Xn, Xni1)?
e Similar to the single node case
e Local message passing until we reach the ,
which are

1
P(Xn,Xn-H) = Eﬂa(Xn)T/f(XmXnH)NB(Xn—H)



Exact Inference
Inference on a Tree

Inference on a Tree

@ How we when the is
more complex than a chain?
@ Difficult problem in general, but we it if the
structure is a
o tree
e A graph where there is between
e No loops
° tree
o A graph where there is with
while have a
e The corresponding will be an

First we introduce a graphical representation that makes
notation easier J




Exact Inference
Inference on a Tree

Factor Graphs

Yet another way to of a set of
variables fc defined over
subsets C of the variables
@ @ @ P(X1, Xz, X3) = fa( X1, Xo) fp( X1, X2)
. 7 fo(X2, X3)fa(X3)
f, fy fo fy

@ Random variables X, are
@ Factors f¢ are functions of the variables X, and are
denoted as

° connect a factor to the variables they are functions
of, e.g. fa(X1 R Xg)



Exact Inference
Inference on a Tree

From Graphical Models to Factor Graphs
Directed Models

N

Both factor graphs represent the

P(Xy, X2, X3) = (X1, X2, X3)

P(X1, X2, X3) = fa( X1) fo( X1, X2, X3)1e(X3)



Exact Inference
Inference on a Tree

From Graphical Models to Factor Graphs
Undirected Models

fy

Y( Xy, Xa, X3) = (X1, Xo, X3)

V(X1, Xa, X3) = fa( X4, X2, X3)fp( X2, X3)

Notice how the in the undirected model in the
second



Exact Inference
Inference on a Tree

Sum-Product Algorithm

@ A powerful class of efficient, for
(directed/undirected) models

@ Use factor graph representation to provide
models

@ Assume all are and

@ We begin by
of the graph



Exact Inference
Inference on a Tree

Sum-Product Algorithm

Overview

@ The marginal for a single node X is

P(X) =) _P(X)
X\X
where X\ X is the set of
@ Factorize the P(X) using the
P(X) = ZH fs(Xs)

X\X s

° sum-products to optimize computation
P(X) = H Z fs(Xs)
s XseX\X

We efficiently due this by J




Exact Inference
Inference on a Tree

Sum-Product Algorithm

Factor to Variable Messages (I)

——

(X, %) ° f

u fs—x (X )
—

Using the structure of the factor graph locally to X we can
express the marginal as

P(X) = H |:ZFS(X7XS)

sene(X) | Xs

@ ne(X) set of of X
@ X, variable via fg



Exact Inference
Inference on a Tree

Sum-Product Algorithm

Factor to Variable Messages (Il)

Using the structure of the factor graph locally to X we can
express the marginal as

PX)= JI [D_oFsX.Xo)| = [[ raox(X)
sene(X) | Xs sene(X)
° Fs(X,Xs) reaching factor fs

@ 1fx(X) to variable X



Exact Inference
Inference on a Tree

Sum-Product Algorithm

Variable to Factor Messages (1)

How do we compute Fg(X, Xs)?

\| P s (XD

——

Ppeoe(X)
—

Fs can be factorized using the variables X, it depends on
FS(XaXS) — fS(X7X1a' . 7XM) G1(X17XS1)7 sty G‘I(XMaXSM)

~
local information information from children m

ﬂfs—>x(X) = Z Fs(Xy Xs)
Xs

IJ‘Xm—>fs(Xm)

Ve

Ht—x(X) = Z T Z fs(X, X1,..., Xu) H [Z Gm(Xm, Xsm)]

X Xu mene(fs)\X | Xsm



Exact Inference
Inference on a Tree

Sum-Product Algorithm

Variable to Factor Messages (ll)

tt—sx(X Z Zfs (X, X1, Xm) H X s (Xm)

X mene(fs)\X

How do we compute Gm(Xm, Xsm)?

fi 'uflﬁxm(Xm) Gm(Xm, Xsm) — H Fl(Xm7 Xml)

Wt s (Xm)

lene(Xm)\fs

S

I /:uflaxm(xm)

i X mosteXm) = [T 1D A Xm Xem)
lene(Xm)\fs | Xmi

= H [y X (Xm)

lene(Xm)\fs



Exact Inference
Inference on a Tree

Sum-Product Algorithm

Summary (l)

To compute P(X;) for a given variable X; using the sum-product
algorithm

@ Pick X; as the of the
sum-product (i.e.
destination of the messages)

@ Begin computing messages at
the

o Leaf = factor us_,x = f(X)
o Leaf =variable pux_s =1

wrox(X) = f(X)
—

f @ Recursively compute the ps_,x
and ux_,r messages

By () =1 is reached

—
O




Exact Inference
Inference on a Tree

Sum-Product Algorithm

Summary (ll)

What if we want to compute P(X) for all variables?

Pick a node as root
and propagate
messages as before

number of edges in the factor graph

Once root has
received all
information,
propagate
messages from root
to the leaves

The number of messages needed is 2 - |E| where |E]| is the J




Exact Inference
Inference on a Tree

Observations

@ The marginal P(Xs) of the variables X; linked to a factor fs
can be computed as

P(Xs) = fs(Xs) HNX,-—>fs(Xi)
i€fs
@ Normalization
o If the factor graph derives from a , the
marginals are
o If derives from an undirected model, we compute the
un-normalized marginals P(X) for each X and

@ Computing marginal P(X|Xe) given Xe
o Perform in messages
Xy

o Given an observed variables Xe = X with value xe,
corresponding to x, (set the rest
to 0)



Inference on a Chain

Exact Inference
Inference on a Tree

Max-Product Inference

Sum-Product Algorithm

Efficiently computes a marginal distribution P(X) from a joint
distribution expressed as a factor graph

Another relevant problem in probabilistic models is to determine
the of unobserved variables

X" =arg max P(X = x)

Max-Product Algorithm

A class of efficient algorithms for finding the x* assignment
maximizing the joint distribution P(X)

We will see an example of this algorithms in



Inference on a Chain

Exact Inference
Inference on a Tree

Exact Inference in General Graphs

@ General which lead to messages
circling forever

@ Can restructure the graph to obtain a tree-like structure
representing the same factorization and perform message

passing on it ( )
@ Key ideais to and build a
whose nodes are the in the

triangulated graph
@ The junction tree is a maximum spanning tree condensing
edges and nodes
e Subset cliques are absorbed into larger ones
e Edges are labeled by the maximum number of variables
shared between cliques

Computational complexity depends on number of variables in
the largest clique (e.g. exponential for discrete variables) J




Approximate Inference

Approximate Inference in General Graphs

@ Computational complexity of exact inference can become

unfeasible
@ Approximate inference algorithms
° - Treat graphs as trees using

sum-product algorithm and a smart message scheduler to
handle message loops

° - Find an analytical approximation of
the inference problem that simplifies computational
complexity (relaxation of conditional independence
relationships)

° - Estimate the sought
expectation by sampling from the probability distributions in
the graph




Variational Inference

Approximate Inference

Variational Inference

@ Loops cause problems to exact inference on original
distribution Q

@ Variational inference
corresponding to a simpler graph (tree or simpler)

o OO0 O0~0O~0O O O O

Oo~—0O~—0OC O O O
Q, Q;
Oo~—0O=~—0O O O O
How do | ?
@ The distribution Q which approximates P more closely

@ The simplest distribution Q (less parameters)



Variational Inference

Approximate Inference

Measuring Goodness of Approximation

- A measure of difference between

distributions

Q(x) i Q(x)

DL(Q||P) = Zo(x)mW or Q(x) Pix )dx

Can use it to find the
Q(0)
6* = arg mein DL(Q(9)||P)
Variational algorithms are typically
@ Compute the factor functions in the approximated graph
@ Estimate Q from the factors
@ lterate until Q does not change much between iterations



Sampling
Approximate Inference

Sampling-based Inference

- Approximate the expectation of a complex
distribution by drawing enough samples from a sufficiently
simple distribution (exploiting conditional independence for
efficiency)

P(X)

Sample the local potentials functions/conditional probabilities

@ Gibbs sampling - Sample variables conditioned on their
Markov blanket



Approximate Inference Conclusion

Take Home Messages

@ Exact inference

e Passing (vectors of information) on the structure
of the graphical model following a

e A node (in the
propagation order), applies and

send out a compact message
@ Exactinference is
@ Sum-product and max-product on
@ Junction tree on graphs with
@ Approximate inference on

e Variational methods: with a simpler
one
e Sampling methods: draw as many instances as needed to



Approximate Inference Conclusion

Next Lecture

@ A probabilistic model for sequences:
(HMMs)

@ An example of
@ Expectation-Maximization algorithm for HMMs

@ Graphical models with : Dynamic
Bayesian Networks
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