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Spatial interpolation



Spatial interpolation: definition

Given the value of an attribute for a set of spatial points,
Compute the value of the attribute for all the points in space
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Spatial Interpolation
Thiessen polygons or Proximity interpolation

The value of a point is the same as the closest input sample
Each point is associated to its Nearest Neighbor

[ J
That yields a Voronoi tessellation around each input point
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Spatial Interpolation
Inverse Distance Weighted (IDW) interpolation

e The value of a point is computed as a weighted average of the other points
e Weights are defined as inverse distance:

“n

. Z = = value at location “j
- D Zifdj d; = distance between locations
J 3. 1/d n'= power (input parameter)

e Basic features:
o Closer points influence more the value estimate
o All estimates are between min Z,. and max ZI.



Spatial Interpolation
Inverse Distance Weighted (IDW) interpolation

e The effect of n

o  The higher, the more emphasis to closer points . > Zi/di;
J n
n=2 n=15
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Basic statistical approach: fit an equation expressing Z. as function of its coordinates

o  The “trend surface”

0t order trend surface:
18t order trend surface:
2" order trend surface:
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Spatial Interpolation
Surface interpolation

Z = const.
Z = aX + bY + const.

Z = aX?+bY2+cXY +dX + eY + const.
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Spatial Interpolation
Kriging

As for IDW, the value of Z is estimated as weighted average of its neighbors
o The difference is in how to compute weights...

Kriging assigns to each point a different set of weights, based on local conditions

It is a 4-step process:
o de-trend (if needed)
o experimental variogram
o variogram model (inferred from experimental values)
o interpolation



Spatial Interpolation
Kriging - step 1: de-trend

e Anassumption of kriging is that data should have no trend (= constant mean)
e We can apply any trend model seen before and “subtract” it from data

original data

e 82

e From now on, we work on residuals
o Atthe end, Prediction = Trend + Predicted residuals

18t order trend residuals



Spatial Interpolation
Kriging - step 2: experimental (semi)variogram

e For each pair of points Z.,Z, in the dataset compute (semi)variance y :

(Z2 — Z1)?
2

’7’:

e Collecting all pairs < distance(Z,,Z,), y > 7

we obtain the experimental (semi)variogram o
(o0}
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o  Usually simplified by binning and
computing average y in each bin
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Spatial Interpolation
Kriging - step 3: (semi)variogram model

e The empirical variogram is modelled by a simple function y(h) (h = distance)
o Most variograms have a general common shape
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e Several variants exist, main ones: Gaussian, Linear, Spherical



Spatial Interpolation
Kriging - step 4: interpolation

e Key question: how to compute the weights between a point and its neighbors?

e Complex approach:
o based on solving a set of “n” equations, if we have “n” neighbors
n "2"' M3"

o Example for n=3, computing the value for point “0” from neighbors “1,

Wiv(hy) + Wav(hyy) + Way(hys) + A = v(hy)

Mv(har) + Way(haz) + War(hys) + A = Y(/”zo‘)\ go;n'?slsﬁag%%bftween

Mr(h31) + Wav(hsy) + Way(hsz) + A = v(h3)

w,+Ww, +W,+0=1.0

l + 2 + 3 + = Predicted residual
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e Predicted residuals and the trend are summed up:

predicted residuals

Spatial Interpolation
Kriging - step 4: interpolation

18t order trend

value prediction




Spatial Interpolation
Kriging: Remarks

Most of the interpolation methods studied today have a common schema: compute a weighted
average of neighbors

They only differ by how the weights are computed:
o Thiessen polygons: w=1 for the NN, w=0 for the others

o IDW: 1/distance (normalized)
o Kriging: complex system based on local variance

Many other methods exist, mainly playing on the weights
o e.g. Minxing Zhang, Dazhou Yu, Yun Li, and Liang Zhao. Deep geometric neural network for

spatial interpolation. In SIGSPATIAL 2022. https://doi.org/10.1145/3557915.3561008
m Machine learning approach: learns to estimate weights through an MLP based on

distance and direction of neighboring points



https://doi.org/10.1145/3557915.3561008

Spatial regression



Regression vs. Interpolation

Generalization of objectives

The (non-spatial) attribute values of points are predicted based on
o Predictive attributes (regressors) of the point
o Predictive attributes of the neighbors

The spatial component is used to link points and share their information
o Interpolation, instead, makes predictions directly from location (the coordinates)

Extend common regression tasks:

(P)=a+BXi+e = [E)=a+pXi+d) wijX +e
J

(Standard regression model) (Spatial regression model)



Spatial Regression
Spatially lagged exogenous regressors

e “Spatial lag” of variable X w.r.t. point “i" : (weighted) average of X over “i”s neighbors
o Basically, a spatial interpolation of X
summary
information from
D neighbors

P)=a+BX;+4|Y wi;X He
(2) /B 7 Z 143 7

S/

target variable at  local predictive exogeneous
point “i” variable at “i" predictive variable

e Weights w, are a parameter, as in interpolation methods



Spatial Regression
Spatially lagged endogenous regressors

e Integrate the spatial dependence among target values of neighboring points
o Basically, a spatial interpolation component over the target variable

(P;) —a+)\E wy; - (P) +B8X; +e
target variable at dependence w.r.t. local predictive
point “i" neighbors’ targets variable at “i"

e IMPORTANT: it means predictions are inter-related, it is not a recursive function
o  We cannot apply simple interpolation — more complex methods are needed (omitted here)



Spatial associations: co-location patterns



Co-location Patterns

e Similar to frequent pattern analysis
o “find sets of items that occur together in several transactions”

e Items are replaced by spatial points
o Issue: what is a “transaction” ?
o Answer: any set of points that are close to
each other

e The concept of frequency needs to be revisited
o a point/item might participate to multiple
instances of the same pattern

“Data Mining for Co-location Patterns: Principles and Applications”, Guoqing Zhou.
https://www.amazon.it/Data-Mining-Co-location-Patterns-Applications/dp/0367688662



Co-location Patterns

e Given
o A set of features (types) F={f_, .., f }
m E.g. F = {restaurant, bar, hotel, barber, supermarket }
o A set of spatial instances O = {o., ..., 0 } of features F
m E.g.: 0= {restaurant#1, bar#1, bar#2, bar#3, hotel#1, barber#1, barber#2,
supermarket#1, supermarket#2}
o A neighbor relation R between pairs of instances

m le R(o,,0,) < distance(o,,0,) < threshold (or equivalent)

C.2

F = {circle, triangle, pentagon, star}
0={A2,C.22,C3, ..,D.1}
R(C.3,D.1) = True

R(D.1,B.2) = True

R(C.3,B.2) = False




Co-location Patterns

e Definitions
o Aco-location pattern CL = {f , ..., f } is a subset of features, i.e. CL S F
m Theaimis to find those where the features appear together very often
o Aninstancel={o,, .. 0} of pattern CL is a subset of O (namely, | S 0) such that
m foreach feature f € CL there is exactly one instance o € | of type f, and viceversa
m |formsacliquewrt. R, ie. 0,0, €1=R(0,0,)

Example:
e CL = {triangle, star}
e |={B.2,C.2}or{B.4,C.2}

{B.2, C.3}is not an instance
{C.3, D.1} is not an instance




Co-location Patterns

Pattern quality measures

@)

@)

Participation Ratio of a feature within a pattern

|7 4, (table_instance(Cl))l

PR(CI, fl) = |[able_inslan()€({fi})|

Participation Index of a pattern

PI(Cl) = m_ki?{PR(Cl, M}

Example:
e PR

how many different
instances of f. appear in
the set of instances of Cl

how many different
instances of fi arein
the whole dataset




Co-location Patterns

A larger example A B A _C A D
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Spatial Trends Detection



starlike

Spatial Trends

Idea: extend the concept of trends in time series
o A sequence of points having a (non-spatial) attribute that changes following a trend

The linear direction of time is replaced by many possible paths in space

Focus on paths that
o  Start from a common location (e.g. the center of a city)
o  Have meaningful shapes (e.g. quasi-straight lines, not random walks)
o  Show a (statistically) significant trend

Sample path shapes allowed Trends need an high correlation

variable starlike vertical starlike (a) positive trend (b) negative trend (¢) no trend

difference
difference

distance



Spatial Trends
Definition

Let g be a neighborhood graph
o paths move from an object to one of its neighbors

Let o be an objecting
o thisis the starting point of paths

Let a be a subset of all non-spatial attributes
o this is where we search for trends

Let t be a type of function, e.g. linear or exponential, used for the regression

The task of Spatial Trend Detection is to discover the set of all neighborhood paths in g starting
from o and having a trend of type t in attributes a with a correlation of at least min-conf



Spatial Trends
Examples

e Global negative trend of variable “average rent” from the Regensburg city center
e A few other single, local trends
o Less surprising, yet correlation is higher

Global trend (min-conf:0.7) Local trends (min-conf:0.9)

== direction of decreasing attribute values



Food for thought

Co-location Patterns: why not to use just the frequency of patterns?
(Namely, number of instances of the colocation pattern)

Spatial Trends: why not to just take the peak values — maybe after a spatial
interpolation, if needed? The other values around them will obviously follow a
decreasing trend

Spatial Classification [yes, it is outside the program of this course]: let say we
have a training set of polygons of buildings, each associated to the class
“public building” or “private building”. Then we have a set of polygons of other
buildings of unknown label, which we would like to classify as public or
private. How would you do that?



to study for the exam

® [book chapter] Introduction to geographic information systems, Kang-Tsung
Chang, McGraw-Hill

O Chapter 15: Spatial Interpolation

Material

e [book chapter| Intro to GIS and Spatial Analysis, Manuel Gimond, online:
https://mgimond.qithub.io/Spatial
o Chapter 14: Spatial Interpolation

e |[book chapter| Spatial data science for sustainable development, Henrikki
Tenkanen, online: https://sustainability-gis.readthedocs.io/en/latest/
o Tutorial 3: Spatial Regression in Python



https://www.amazon.it/Introduction-geographic-information-systems-Kang-Tsung/dp/0078095131
https://mgimond.github.io/Spatial
https://sustainability-gis.readthedocs.io/en/latest/

to study for the exam

[paper] A MapReduce approach for spatial co-location pattern

mining via ordered-clique-growth, Yang-Wang-Wang, 2020
https://doi.org/10.1007/s10619-019-072/8-7

O Section 3.1: Co-location pattern mining

Material

[paper] Algorithms for Characterization and Trend Detection in Spatial
Databases, Ester-Frommelt-Kriegel-Sander
https://www.lri.fr/~sebag/Examens/Ester KDD98.pdf

o Section 4: Spatial Trend Detection

o Have a quick look also to the rest of the paper



https://doi.org/10.1007/s10619-019-07278-7
https://www.lri.fr/~sebag/Examens/Ester_KDD98.pdf

