

Consiglio Nazionale delle Ricerche

03bis Spatial Data Analysis

Todays contents

- Spatial interpolation
 - Thiessen polygons
 - o IDW
 - Kriging
- Spatial regression
- Spatial associations: co-location patterns
- Spatial trends

Spatial interpolation: definition

• Given the value of an attribute for a set of spatial points, Compute the value of the attribute for all the points in space

• Analogy with time series: given a subset of points, reconstruct the whole time series

Thiessen polygons or Proximity interpolation

- The value of a point is the same as the closest input sample
 - Each point is associated to its Nearest Neighbor
 - That yields a Voronoi tessellation around each input point

Inverse Distance Weighted (IDW) interpolation

- The value of a point is computed as a weighted average of the other points
- Weights are defined as inverse distance:

$$\hat{Z}_j = rac{\sum_i Z_i/d_{ij}^n}{\sum_i 1/d_{ij}^n}$$

Z_j = value at location "j" d_{ij} = distance between locations n = power (input parameter)

- Basic features:
 - Closer points influence more the value estimate
 - All estimates are between min Z_i and max Z_i

Inverse Distance Weighted (IDW) interpolation

- The effect of *n*
 - The higher, the more emphasis to closer points

$$\hat{Z_j} = rac{\sum_i Z_i/d_{ij}^n}{\sum_i 1/d_{ij}^n}$$

n = 2

n = 15

 $n \rightarrow \infty$

Spatial Interpolation Surface interpolation

- Basic statistical approach: fit an equation expressing Z_i as function of its coordinates The "trend surface" 0
- 0^{th} order trend surface: Z = const.

 1^{st} order trend surface: Z = aX + bY + const.

 2^{nd} order trend surface: $Z = aX^2 + bY^2 + cXY + dX + eY + const.$

Spatial Interpolation Kriging

- As for IDW, the value of Z_i is estimated as weighted average of its neighbors
 The difference is in how to compute weights...
- Kriging assigns to each point a different set of weights, based on local conditions
- It is a 4-step process:
 - de-trend (if needed)
 - experimental variogram
 - variogram model (inferred from experimental values)
 - interpolation

Spatial Interpolation Kriging - step 1: de-trend

- An assumption of kriging is that data should have no trend (= constant mean)
- We can apply any trend model seen before and "subtract" it from data

- From now on, we work on residuals
 - At the end, Prediction = Trend + Predicted residuals

Kriging - step 2: experimental (semi)variogram

• For each pair of points Z_1, Z_2 in the dataset compute (semi)variance γ :

$$\gamma=rac{(Z_2-Z_1)^2}{2}$$

- Collecting all pairs < distance(Z₁,Z₂), γ > we obtain the experimental (semi)variogram
 - Usually simplified by binning and computing average γ in each bin

Spatial Interpolation Kriging - step 3: (semi)variogram model

- The empirical variogram is modelled by a simple function $\gamma(h)$ (h = distance)
 - Most variograms have a general common shape

• Several variants exist, main ones: Gaussian, Linear, Spherical

Kriging - step 4: interpolation

- Key question: how to compute the weights between a point and its neighbors?
- Complex approach:
 - based on solving a set of "n" equations, if we have "n" neighbors
 - Example for n=3, computing the value for point "0" from neighbors "1", "2", "3"

$$\begin{split} & W_{1}\gamma(h_{11}) + W_{2}\gamma(h_{12}) + W_{3}\gamma(h_{13}) + \lambda = \gamma(h_{10}) \\ & W_{1}\gamma(h_{21}) + W_{2}\gamma(h_{22}) + W_{3}\gamma(h_{23}) + \lambda = \gamma(h_{20}) \\ & W_{1}\gamma(h_{31}) + W_{2}\gamma(h_{32}) + W_{3}\gamma(h_{33}) + \lambda = \gamma(h_{30}) \\ & W_{1} + W_{2} + W_{3} + 0 = 1.0 \end{split}$$

• Then, the (residual) for point "0" will be:

 $z_0 = z_1 W_1 + z_2 W_2 + z_3 W_3$

Spatial Interpolation Kriging - step 4: interpolation

• Predicted residuals and the trend are summed up:

Spatial Interpolation Kriging: Remarks

- Most of the interpolation methods studied today have a common schema: compute a weighted average of neighbors
- They only differ by how the weights are computed:
 - Thiessen polygons: w=1 for the NN, w=0 for the others
 - IDW: 1/distance (normalized)
 - Kriging: complex system based on local variance
- Many other methods exist, mainly playing on the weights
 - e.g. Minxing Zhang, Dazhou Yu, Yun Li, and Liang Zhao. Deep geometric neural network for spatial interpolation. In SIGSPATIAL 2022. <u>https://doi.org/10.1145/3557915.3561008</u>
 - Machine learning approach: learns to estimate weights through an MLP based on distance and direction of neighboring points

Spatial regression

Regression vs. Interpolation

- Generalization of objectives
- The (non-spatial) attribute values of points are predicted based on
 - Predictive attributes (regressors) of the point
 - Predictive attributes of the neighbors
- The spatial component is used to link points and share their information
 - Interpolation, instead, makes predictions directly from location (the coordinates)

• Extend common regression tasks:

$$(P_i) = \alpha + \beta X_i + \epsilon_i$$
 $(P_i) = \alpha + \beta X_i + \delta \sum_j w_{ij} X'_j + \epsilon_i$
(Standard regression model) (Spatial regression model)

Spatial Regression Spatially lagged exogenous regressors

"Spatial lag" of variable X w.r.t. point "i" : (weighted) average of X over "i"s neighbors
 Basically, a spatial interpolation of X

• Weights w_{ii} are a parameter, as in interpolation methods

Spatial Regression Spatially lagged endogenous regressors

- Integrate the spatial dependence among target values of neighboring points
 - Basically, a spatial interpolation component over the target variable

- IMPORTANT: it means predictions are inter-related, it is not a recursive function
 - We cannot apply simple interpolation \rightarrow more complex methods are needed (omitted here)

Spatial associations: co-location patterns

- Similar to frequent pattern analysis
 - "find sets of items that occur together in several transactions"
- Items are replaced by spatial points
 - Issue: what is a "transaction" ?
 - Answer: any set of points that are close to each other
- The concept of frequency needs to be revisited
 - a point/item might participate to multiple instances of the same pattern

"Data Mining for Co-location Patterns: Principles and Applications", Guoqing Zhou. https://www.amazon.it/Data-Mining-Co-location-Patterns-Applications/dp/0367688662

• Given

- A set of **features (types)** $F = {f_1, ..., f_m}$
 - E.g. F = { restaurant, bar, hotel, barber, supermarket }
- A set of **spatial instances O** = $\{o_1, ..., o_n\}$ of features F
 - E.g.: O = { restaurant#1, bar#1, bar#2, bar#3, hotel#1, barber#1, barber#2, supermarket#1, supermarket#2}
- A neighbor relation R between pairs of instances
 - I.e. $R(o_1, o_2) \Leftrightarrow distance(o_1, o_2) < threshold (or equivalent)$

F = {circle, triangle, pentagon, star} O = {A.2, C.2, C.3, ..., D.1} R(C.3, D.1) = True R(D.1, B.2) = True R(C.3, B.2) = False

...

- Definitions
 - A **co-location pattern CL** = { $f_1, ..., f_k$ } is a subset of features, i.e. CL \subseteq F
 - The aim is to find those where the features appear together very often
 - An **instance I** = { $o_1, ..., o_k$ } of pattern CL is a subset of O (namely, I \subseteq O) such that
 - for each feature $f \in CL$ there is exactly one instance $o \in I$ of type f, and viceversa
 - I forms a clique w.r.t. R, i.e. $o_1, o_2 \in I \Rightarrow R(o_1, o_2)$

Example:

- CL = {triangle, star}
- I = {B.2, C.2} or {B.4, C.2}

 $I = \{B.2, C.3\}$ is not an instance I = {C.3, D.1} is not an instance

Spatial Trends Detection

Spatial Trends

- Idea: extend the concept of trends in time series
 - A sequence of points having a (non-spatial) attribute that changes following a trend
- The linear direction of time is replaced by many possible paths in space
- Focus on paths that
 - Start from a common location (e.g. the center of a city)
 - Have meaningful shapes (e.g. quasi-straight lines, not random walks)
 - Show a (statistically) significant trend

(a) positive trend (b) negative trend (c) no trend

Trends need an high correlation

Spatial Trends Definition

- Let **g** be a **neighborhood graph**
 - paths move from an object to one of its neighbors
- Let **o** be an object in g
 - this is the starting point of paths
- Let **a** be a subset of all non-spatial attributes
 - this is where we search for trends
- Let **t** be a type of function, e.g. linear or exponential, used for the regression
- The task of **Spatial Trend Detection** is to discover the set of all neighborhood paths in g starting from o and having a trend of type t in attributes a with a correlation of at least *min-conf*

Spatial Trends Examples

- Global negative trend of variable "average rent" from the Regensburg city center
- A few other single, local trends
 - Less surprising, yet correlation is higher

Global trend (min-conf:0.7)

Local trends (min-conf:0.9)

direction of decreasing attribute values

Food for thought

- **Co-location Patterns**: why not to use just the frequency of patterns? (Namely, number of instances of the colocation pattern)
- **Spatial Trends**: why not to just take the peak values maybe after a spatial interpolation, if needed? The other values around them will obviously follow a decreasing trend
- **Spatial Classification** [yes, it is outside the program of this course]: let say we have a training set of polygons of buildings, each associated to the class "public building" or "private building". Then we have a set of polygons of other buildings of unknown label, which we would like to classify as public or private. How would you do that?

to study for the exam

Material

- [book chapter] Introduction to geographic information systems, Kang-Tsung Chang, McGraw-Hill
 - Chapter 15: Spatial Interpolation
- [book chapter] Intro to GIS and Spatial Analysis, Manuel Gimond, online: <u>https://mgimond.github.io/Spatial</u>
 - Chapter 14: Spatial Interpolation
- [book chapter] Spatial data science for sustainable development, Henrikki Tenkanen, online: <u>https://sustainability-gis.readthedocs.io/en/latest/</u>
 Tutorial 3: Spatial Regression in Python

to study for the exam

Material

- [paper] A MapReduce approach for spatial co-location pattern
- mining via ordered-clique-growth, Yang-Wang-Wang, 2020 <u>https://doi.org/10.1007/s10619-019-07278-7</u>
 - Section 3.1: Co-location pattern mining
- [paper] Algorithms for Characterization and Trend Detection in Spatial Databases, Ester-Frommelt-Kriegel-Sander <u>https://www.lri.fr/~sebag/Examens/Ester_KDD98.pdf</u>
 - Section 4: Spatial Trend Detection
 - Have a quick look also to the rest of the paper