
03
Spatial Data

Analysis

Todays contents

● A bit of (confusing) terminology

● Basic spatial data types
○ Raster vs. Vectorial

● Basic spatial operations
○ intersection, union, difference
○ buffering
○ spatial join

● Simple spatial patterns and concentration measures
○ Moran’s I
○ Geary’s C

Fundamental concepts

Basic Terms and Concepts
mainly coming from the GIS world

Layers

● Information is organized in separate “sheets”, named
(thematic) layers

○ They refer to the same geographical area, but have
independent lives

● Each layer contains a set of objects, usually of the same
nature, type and/or logical function

○ E.g. a layer for the street network, one for the position
of buildings, etc.

● Layers can be processed and combined together
○ E.g. to identify the buildings within a neighborhood,

Raster Layers

● Divide the space into a regular grid of squares
○ Equivalent to an image made of pixels

● Associate some information at each cell / pixel
○ single-band raster = one attribute value
○ multi-band raster = several attributes

● The size of cells defines the resolution of the data

● Typically come from satellite sensors

Raster Layers - examples
From Copernicus/Sentinel satellites

NO2 in S. Korea Moisture in Poland

https://browser.dataspace.copernicus.eu/

https://browser.dataspace.copernicus.eu/

Raster Layers - examples
From Copernicus/Sentinel satellites

Normalized Difference Vegetation Index (NDVI)
in Sundarbans, Bangladesh

Digital Elevation Model (DEM)
in Tuscany

https://browser.dataspace.copernicus.eu/

https://browser.dataspace.copernicus.eu/

Raster Layers

● In summary: a pixelized version of Earth
● Kind of Minecraft

○ yet not limited to visible channels
(unsurprisingly)

Vector data model

It uses discrete objects to represent spatial features:

1. representing points, lines, and polygons on an empty space

2. structuring the properties and spatial relationships of these
geometric objects

3. coding and storing vector data in digital data files

Vector types

https://saylordotorg.github.io/text_essentials-of-geographic-information-systems/section_08/5e0adb92da29fb258470bfeb5265cc55.jpg

Vector types

● Point: zero dimension
○ properties: location (xy coords)

https://saylordotorg.github.io/text_essentials-of-geographic-information-systems/section_08/5e0adb92da29fb258470bfeb5265cc55.jpg

Vector types

● Point: zero dimension
○ properties: location (xy coords)

● Line: one-dimensional
○ properties: location and length
○ has two end Points
○ straight-line or curve

https://saylordotorg.github.io/text_essentials-of-geographic-information-systems/section_08/5e0adb92da29fb258470bfeb5265cc55.jpg

Vector types

● Point: zero dimension
○ properties: location (xy coords)

● Line: one-dimensional
○ properties: location and length
○ has two end Points
○ straight-line or curve

● Polygon: two-dimensional
○ properties: location, area,

perimeter
○ made of connected closed lines

https://saylordotorg.github.io/text_essentials-of-geographic-information-systems/section_08/5e0adb92da29fb258470bfeb5265cc55.jpg

● Google Maps
○ Point, Linestring,

LinearRing, Polygon

● GeoJSON
○ Point, LineString,

Polygon

● Shapely
○ Point, LineString,

Polygon

https://storage.googleapis.com/lds-media/images/geo-points-verts-polys.width-1200.jpg

Data Format Examples

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2" xmlns:gx="http://www.google.com/kml/ext/2.2"
xmlns:kml="http://www.opengis.net/kml/2.2" xmlns:atom="http://www.w3.org/2005/Atom">
<Document>

 <name>polygon.kml</name>
 <Style id="orange-5px">
 <LineStyle>

<color>ff00aaff</color>
<width>5</width>

 </LineStyle>
 </Style>

 <Placemark>
 <name>A polygon</name>
 <styleUrl>#orange-5px</styleUrl>

 <LineString>
<tessellate>1</tessellate>
<coordinates>
 8.542123809233731,47.36651432591258,0
 8.542020373307826,47.36684332453151,0
 8.544057950790664,47.36717881947375,0
 8.544133279150493,47.36684482636069,0
 8.542123809233731,47.36651432591258,0 <!-- = start point-->
</coordinates>

 </LineString>

 </Placemark>
</Document>
</kml>

● Google KML for visualization

https://renenyffenegger.ch/notes/tools/Google-Earth/kml/index

https://renenyffenegger.ch/notes/tools/Google-Earth/kml/index

Data Format Examples

{
 "coordinates":
 [
 [
 8.310242689008646,
 47.05429444841852
],
 [
 8.310504651721004,
 47.05399445514598
],
 [
 8.309440079847974,
 47.05356534791096
],
 [
 8.309228280208345,
 47.05341345071696
],
 [
 8.309100085689579,
 47.05285522481279
],
 [
 8.308498128818854,
 47.05292737678937
]
],
 "type": "LineString"
 }

● GeoJSON

https://medium.com/@dmitry.sobolevsky/geojson-tutorial-for-beginners-ce810d3ff169

https://medium.com/@dmitry.sobolevsky/geojson-tutorial-for-beginners-ce810d3ff169

Data Format Examples

● Python’s Shapely library:

○ shapely.geometry.LineString([(2, 0.5), (1, 1), (-1, 0), (1, 0)])

● Through WKT (Well Known Text) standard format:

○ shapely.wkt.loads('LINESTRING (0 1, 1 0, 2 0.5, 3 0, 4 0, 5 0.5, 6 -0.5, 7 -0.5, 7 1)')

https://geobgu.xyz/py-2022/shapely.html
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

https://geobgu.xyz/py-2022/shapely.html
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

Terminology

● Objects (points, lines, polygons, etc.) in a layer
are also called (spatial) features

○ their presence is a “feature” of space

● The other variables (e.g. Temp in the fig.) are
called (non-spatial) attributes

○ better not calling them just features…

Temp = 37°

Temp = 28°

Temp = unknown

Temp = 25

Data Representation Model

How do we represent geometric objects in a computer?

● Geo-relational data model
○ stores geometries and attributes separately
○ associating attributes to an object requires some operations

● Object-relational data model
○ stores geometries and attributes together
○ attributes are part of the objects

ID x, y

1 (2, 2)

2 (6, 2)

3 (4, 4)

4 (2, 9)

Objects

Temp = 37°

Temp = 28°

Temp = unknown

Temp = 25

ID Temp

1 28°

2 25°

4 37°

Attributes

Geo-relational Model

ID x, y Temp

1 (2, 2) 28°

2 (6, 2) 25°

3 (4, 4) N/A

4 (2, 9) 37°

Objects

Temp = 37°

Temp = 28°

Temp = unknown

Temp = 25

Object-relational Model

Raster or Vector?

● In principle, vectors can model everything

● Yet, raster can be practical for “dense” data
○ In particular, more efficient

● What would you use for representing:
○ Points of interest (bars, cinemas, etc.) ?
○ The home location of people ?
○ The price of houses in the city ?
○ Animal ranges (areas where they move) ?

From Raster to Vector, and viceversa

● Rasterization: from vectors to raster images
○ Introduces approximations
○ Which pixels should be selected?

● Vectorization: from raster images to vectors
○ Can be very difficult

trivial solution
(take borders of selected pixels)

more sophisticated
(bilinear pixel interpolation)

← https://wordsandbuttons.online/simple_image_vectorization.html

https://wordsandbuttons.online/simple_image_vectorization.html

Vector and Raster layers used together

● Modeling reality often requires several layers

● Some objects are better modeled (or easier to find in
data sources) as vector features:

○ administrative boundaries
○ street network
○ single locations

● Others are usually raster:
○ land usage
○ DEM

Fundamental concepts

Spatial operations
intersection, union, buffering, spatial join

Overlay Spatial Operations

● Several operations are inherited from set theory, with the same meaning

● They belong to the family of Overlay operations, e.g.:

○ Intersection

○ Union

○ Difference

Intersection
Area B

Area A

A ⋂ B

Intersection/2

Set of points B

Area A

A ⋂ B

(The outline is just for readability.
It is not part of the output)

Union
Area B

Area A

A ⋃ B

Warning: some tools (e.g. QGIS) return a multipolygon. Here union just added a polygon.
Solution (if it is a problem): “dissolve” operation

Union/2
Area B

Area A

dissolve(A ⋃ B)

Warning: some tools (e.g. QGIS) return a multipolygon. Here union just added a polygon.
Solution (if it is a problem): “dissolve” operation

Difference
Area B

Area A

A - B (or A \ B)

GIS-oriented Spatial Operations

● Some operations are more oriented to manipulate geometries or managing the non-spatial
attributes

○ Creating buffers

○ Joining attributes of geometries

○ Overlays

Buffers

Buffer of 10 km● Expand the shape by a given amount
● Equivalent to replace each point in the

geometry by a circle

Spatial Join

● As in databases, merge the information of two objects A and B if they “match”
○ Most common notion of “match”:

■ A intersects B
■ A contains B
■ A = B
■ A touches B (they are neighbors, though not intersecting)

● Using database terms, the join can be
○ inner: the output contains only pairs that match
○ outer / left / right: the output contains all non-matching objects

■ in this case the attributes added by the join are Null

Spatial Join

Set of points B

Area A

Inner intersect join(A, B)

(“Tuscany”, “Italy”)

(341, “Tony”)

(“Tuscany”, “Italy”, 341, “Tony”)

Suggested “point-n-click” software

Fundamental concepts

Point spatial patterns
and spatial correlation
density, NNs, Moran’s I & Geary’s C, etc.

Point spatial patterns

● General objective: understanding how objects are distributed in space
○ Not interested (yet) in non-spatial attributes

● In spatial point pattern analysis, spatial distribution patterns are typically categorized into three
types:

○ uniform (discrete) distribution
○ random distribution
○ clustered distribution

Image: http://dx.doi.org/10.4312/dp.47.27

http://dx.doi.org/10.4312/dp.47.27

Center and dispersion measures

● Exactly as in standard statistics, we can define
○ a center around which all objects are distributed
○ various dispersion indexes to measure how much dispersed around they are

https://mgimond.github.io/Spatial/

https://mgimond.github.io/Spatial/

Density estimation

● Simple question: how many points (or objects) are in the same place?

● Issue: “same place” can have different meanings

● We will explore three of them:
○ Global density: computed over all the geographical area

■ E.g. number of restaurants per m2
○ Local density: computed separately over the small cells of a tesselation

■ E.g. restaurants per m2 for each municipality
○ Kernel density: the density of one cells is computed considering its neighborhood

■ E.g. restaurants in and around each municipality

Global vs. Local density

● N.points: 31
● 10m x 10m area

0.31
pts/m2

0.20
pts/m2

0.36
pts/m2

0.32
pts/m2

0.32
pts/m2

0.48

0.32

0.32 0.32

0.16 0.32

0.16 0.64

0.32 0.32

0.32

0.96

X
X

X
X

Global Local

Kernel density

● Define a neighborhood NC for each cell C

○ Typically, the 8 adjacent cells

○ Density of C = density of { C } U NC
■ Smoothing effect similar to “moving average”

in time series

C

NC

Weighted Kernel density

● Points in the neighborhood have a weight dependent on the distance from C’s center
● E.g. Gaussian function of distance: G(d)

distance

weight

R > 1
Dispersion maximizes distances,
yielding larger dobs

Random vs. Pattern / 1

● Average Nearest Neighbor (ANN) analysis
○ Associate each point to its nearest neighbor distance (di)
○ Compute average di values (dobs)
○ Normalize w.r.t. expected dobs over random points (dexp):

R = 1
By definition, since we expect all
random cases yield the same dobs

R < 1
Most points have a few very close
neighbors, thus small dobs

Random vs. Pattern / 2

● L function (a.k.a. standardized Ripley’s K-function)
Given N points in an area of size A and a distance parameter d:

○ Compute all N(N-1) distances between each pair of points

○ Compute the fraction φ of distances that are < d

○ Compute:

● Property: L(d)=d for random points

● Exploring L(d) for various d values allows understanding patterns at

different spatial granularities

Spatial Autocorrelation

● Measures to assess the relations / dependencies between a non-spatial attribute of objects and
their spatial location

○ E.g. how much is the temperature in one place influenced by temperature around it?

● Autocorrelation: correlation between values of the same variable (e.g. temperature) measured in
different times or places

○ different times → time series → temporal autocorrelation
■ Values at each time t are correlated with value at t + δ (lagged correlation)

○ different places → geospatial data → spatial autocorrelation
■ Values at each location p are correlated with values in p’s neighborhood

● Tobler’s first law of geography: “everything is related to everything else, but near things are more
related than distant things.”

 Moran’s I

● Autocorrelation between values of each point against all other points in its neighborhood

○ n = number of points in the dataset
○ m = number of neighbors (assuming it is constant)
○ s2 = variance of values
○ wij = strength of dependency between points “i” and “j”

■ various ways to define it
■ most common: wij = 1/distance(i,j)

● I > 0 means positive correlation; I < 0 means negative correlation (w.r.t. nearby values)

 Moran’s I

● Alternative reading: Moran’s I = average of several “Local Moran’s I”s:

● We can explore Local I values in a “spatial lag plot”
(ref.: lag plots in time series)

○ lag = average value around the reference point

Geary’s C

● Similar in concept to Moran’s I:

○ though it measures (almost) the opposite
○ the higher is C, the more different are nearby values

● It can be seen that Geary’s C is less sensitive to linear associations

● Also here, a Local C can be explored

S0 = ∑i ∑j wij

Geary’s C

● A comparison:

INTERVALLO

Waldo Rudolph Tobler
(1930-2018)

● Geographer and cartographer
● Father of Tobler’s First Law of Geography

○ A top citation in geospatial studies
(and often abused…)

INTERVALLO

Great contributions to many areas:
● analytical cartography
● early dev. of Geographic information systems (GIS)
● lay the groundwork for GIScience
● computer cartography

○ one of the first to use computers in geography
● map projections, choropleth maps, flow maps,

cartograms, animated mapping
● mathematical modeling of geographic phenomena

INTERVALLO
● W. R. Tobler. “A Computer Movie Simulating Urban Growth in

the Detroit Region”. Economic Geography, 1970.

http://www.youtube.com/watch?v=kRsF9S8JqBI

INTERVALLO
● Tobler's hiking function

○ models an average hiker walking speed on slopes
○ Tobler collected data himself
○ Published results in a 1993 paper

Food for thought

● The mobility of a vehicle is recorded through GPS. Should it be represented as
a (set) of points or as lines (LineString or similar)?

● Let assume that a mobile phone app can “see” all the antennas that are within
1km from it, and that we have a list of all existing antennas with their location
(lon, lat). Can the app infer the location of the phone? Can it do that using the
vector operations seen in previous slides?

● In Moran’s I the neighborhood is a parameter. Let define Ii = Moran’s I with
neighborhood equal to a ring of internal radius “i” km and external radius “i+1”
km, and set all weights wij = 1. Compute Ii for several “i” values. How does Ii
varies when “i” increases?

i

i+1

Material
to study for the exam

● [book chapter] Introduction to geographic information systems, Kang-Tsung
Chang, McGraw-Hill
○ Sections 3.1, 3.3 (no subsections)
○ Sections 4.1, 4.2, 4.3, 4.7: Raster Data Model
○ Section 8.5: Spatial Join
○ Chapter 11: Vector Data Analysis

● [book chapter] Intro to GIS and Spatial Analysis, Manuel Gimond, online:
https://mgimond.github.io/Spatial
○ Chapter 11: Pattern Analysis
○ Chapter 13: Spatial Autocorrelation

● [book section] Encyclopedia of GIS: Geary’s C, Xiaobo Zhou & Henry Lin,
online: https://doi.org/10.1007/978-0-387-35973-1_446

https://www.amazon.it/Introduction-geographic-information-systems-Kang-Tsung/dp/0078095131
https://mgimond.github.io/Spatial
https://doi.org/10.1007/978-0-387-35973-1_446

