DATA MINING 1 Classification Model Evaluation

Dino Pedreschi, Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 3 "Introduction to Data Mining", 2nd Edition by Tan, Steinbach, Karpatne, Kumar

What is Classification?

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Problem Setting

- Let suppose we have a vector y of actual/real class labels, i.e.,
 y = [0001110101011100]
- Let name y' the vector returned by a trained model f, i.e.,
 y' = [0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0]

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.

• Confusion Matrix:

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	а	b		
CLASS	Class=No	С	d		

a: TP (true positive)

- b: FN (false negative)
- c: FP (false positive)
- d: TN (true negative)

Metrics for Performance Evaluation

•y = [0001110101011100] •y' = [0011100101110000] • TN FP FN TP

Metrics for Performance Evaluation...

Most widely-used metric:

$$Accuracy = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
- Accuracy is misleading because model does not detect any class 1 example

Cost-Sensitive Measures

Precision (p) =
$$\frac{TP}{TP + FP}$$

Recall (r) = $\frac{TP}{TP + FN}$
F-measure (F) = $\frac{2rp}{r + p} = \frac{2TP}{2TP + FN + FP}$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Cost Matrix

	PREDICTED CLASS			
	C(i j)	Class=Yes	Class=No	
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)	
CLASS	Class=No	C(Yes No)	C(No No)	

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS				
	C(i j)	+	-		
ACTUAL CLASS	+	-1	100		
OLAGO		1	0		

Model M ₁	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	150	40	
		60	250	

Model M ₂	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	250	45	
ULASS .	-	5	200	

Accuracy = 80% Cost = 3910 Accuracy = 90% Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	а	b		
CLASS	Class=No	С	d		

Cost	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	р	q		
CLASS	Class=No	q	р		

Accuracy is proportional to cost if 1. C(Yes|No)=C(No|Yes) = q

2. C(Yes|Yes)=C(No|No) = p

N = a + b + c + d

Accuracy = (a + d)/N

Binary vs Multiclass Evaluation

	PREDICTED CLASS				PREDICTI	ED CLASS		
		Class=Yes	Class=No			Class=A	Class=B	Class=C
ACTUAL CLASS	Class=Yes	TP	FN	ACTUAL CLASS	Class=A	TP-A		
	Class=No	FP	TN		Class=B		TP-B	
					Class=C			TP-C

Accuracy = TP+TN / (TP+TN+FN+FP) = # correct / N

Accuracy = # correct / N = (TP-A + TP-B + TP-C) / N

Multiclass Evaluation

	PREDICTED CLASS					
		Class=A	Class=B	Class=C		
ACTUAL CLASS	Class=A	TP-A	а	b		
	Class=B	С	TP-B	d		
	Class=C	е	f	TP-C		

Precision (p) =
$$\frac{TP}{TP + FP}$$

Recall (r) = $\frac{TP}{TP + FN}$
F-measure (F) = $\frac{2rp}{r + p} = \frac{2TP}{2TP + FN + FP}$

A	PREDICTED CLASS				
		Class=A	Class=Not A		
ACTUAL	Class=A	TP-A	a + b		
CLASS	Class=Not A	c + e	TP-B + TP-C + d + f		

В	PREDICTED CLASS			
		Class=B	Class=Not B	
ACTUAL	Class=B	TP-B	c + d	
CLASS	Class=Not B	a + f	TP-A + TP-C + b + e	

С	PREDICTED CLASS				
		Class=C	Class=Not C		
ACTUAL	Class=C	TP-C	e + f		
CLASS	Class=Not C	b + d	TP-A + TP-B + a + c		

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Evaluation

Parameter Tuning

- It is important that the test data is not used in any way to create the classifier
- Some learning schemes operate in two stages:
 - Stage 1: builds the basic structure
 - Stage 2: optimizes parameter settings
 - The test data can't be used for parameter tuning!
 - Proper procedure uses three sets:
 - training data,
 - validation data,
 - test data
 - Validation data is used to optimize parameters
- Once evaluation is complete, all the data can be used to build the final classifier
- Generally, the larger the training data the better the classifier
- The larger the test data the more accurate the error estimate

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

- 1. How much a classification model benefits from adding more training data?
- 2. Does the model suffer from a variance error or a bias error?

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

Holdout

- The holdout method reserves a certain amount for testing and uses the remainder for training
- Usually, one third for testing, the rest for training.
- Typical quantities are 60%-40%, 66%-34%, 70%-30%.
- For small or "unbalanced" datasets, samples might not be representative
 - For instance, few or none instances of some classes
- Stratified sample
 - Balancing the data
 - Make sure that each class is represented with approximately equal proportions in both subsets

Repeated Holdout

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training (possibly with stratification)
 - The error rates on the different iterations are **averaged** to yield an overall error rate
- This is called the **repeated holdout method**
- Still not optimum: the different test sets overlap

Cross Validation

• Avoids overlapping test sets

Run 3

- First step: data is split into k subsets of equal size
- Second step: each subset in turn is used for testing and the remainder for training
- This is called k-fold cross-validation
- Often the subsets are stratified before cross-validation is performed
- The error estimates are averaged to yield an overall error estimate
- Even better: repeated stratified cross-validation E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)

Data Partitioning

Dataset			
Train	Test	Holdout (e.g.70/30)	
Train the model for final testing			
Train	Validation	Test	
Train the model for parameter selection	Validate the model (early stopping, parameter selection, etc.)	 Test the model Compare difference models once parameters have been selected 	
Cross Validation (shock potential data		Test	

Cross Validation (check potential dataset bias)

Evaluation: Training, Validation, Tests

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals

 Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

Receiver Operating Characteristic Curve

- It illustrates the ability of a binary classifier as its discrimination threshold THR is varied.
- The *ROC* curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various THR.
- The TPR = TP / (TP + FN) is also known as sensitivity, recall or probability of detection.
- The FPR = FP / (TN + FP) is also known as probability of *false alarm* and can be calculated as (1 - specificity).

0.9

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (0,1): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal: Area = 1
 - Random: Area = 0.5

How to Construct the ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

TPR = TP / (TP + FN)FPR = FP / (TN + FP)

How to Construct the ROC curve

													Inst.	P(+ A)	True Class
	Class	+		+	_			+	-	+	÷		1	0.95	+
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00	2	0.93	+
	ТР												3	0.87	-
													4	0.85	-
	FP												5	0.85	-
	TN												6	0.85	+
	FN												7	0.76	-
	TPR												8	0.53	+
\rightarrow	FPR												9	0.43	-
			. ,				-		. ,	,		. Ш	10	0.25	+

													Inst.	P(+ A)	True Class
	Class	+	-	+	-	-	-	+		+	÷		1	0.95	+
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00	2	0.93	+
	ТР	5											3	0.87	-
			ŀ										4	0.85	-
	FP	5	-										5	0.85	-
	TN	0	-										6	0.85	+
	FN	0	-										7	0.76	-
	TPR	1											8	0.53	+
	FPR	1	-										9	0.43	-
		μμ	· · · · · ·	· ,	• •	•,							10	0.25	+

													Inst.	P(+ A)	True Class
	Class	+		+	_			+		+	÷		1	0.95	+
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00	2	0.93	+
	ТР	5	4										3	0.87	-
													4	0.85	-
	FP	5	5										5	0.85	-
	TN	0	0										6	0.85	+
	FN	0	1										7	0.76	-
	TPR	1	0.8										8	0.53	+
	FPR	1	1										9	0.43	-
				ļ,					•	·,		. U	10	0.25	+

													Inst.	P(+ A)	True Class
	Class	+		+	_		_	+		+	÷		1	0.95	+
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00	2	0.93	+
	ТР	5	4	4									3	0.87	-
													4	0.85	-
	FP	5	5	4									5	0.85	-
	TN	0	0	1									6	0.85	+
	FN	0	1	1									7	0.76	-
	TPR	1	0.8	0.8									8	0.53	+
	FPR	1	1	0.8									9	0.43	-
	,,				l. ,		-					. – U	10	0.25	+

													Inst.	P(+ A)	True Class
	Class	+		+	_			+		+	÷		1	0.95	+
ו Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00	2	0.93	+
	ТР	5	4	4	3								3	0.87	-
													4	0.85	-
	FP	5	5	4	4								5	0.85	-
	TN	0	0	1	1								6	0.85	+
	FN	0	1	1	2								7	0.76	-
	TPR	1	0.8	0.8	0.6								8	0.53	+
	FPR	1	1	0.8	0.8								9	0.43	-
I				ļiļ		l . ,			• •	·		. 11	10	0.25	+

													Inst.	P(+ A)	True Class
	Class	+	1 1	+	_			+		+	Ŧ		1	0.95	+
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00	2	0.93	+
	ТР	5	4	4	3	3							3	0.87	-
													4	0.85	-
	FP	5	5	4	4	3							5	0.85	-
	TN	0	0	1	1	2							6	0.85	+
	FN	0	1	1	2	2							7	0.76	-
→	TPR	1	0.8	0.8	0.6	0.6							8	0.53	+
	FPR	1	1	0.8	0.8	0.6							9	0.43	-
	,			и,	•	•	-		· · · ·	,			10	0.25	+

													Inst.	P(+ A)	True Class
	Class	+		+	-	_	-	+		+	÷		1	0.95	+
ı Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00	2	0.93	+
	ТР	5	4	4	3	3	3	3	2				3	0.87	-
			4	4					2				4	0.85	-
	FP	5	5	4	4	3	2	1	1				5	0.85	-
	TN	0	0	1	1	2	3	4	4				6	0.85	+
	FN	0	1	1	2	2	2	2	3				7	0.76	-
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4				8	0.53	+
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2				9	0.43	-
		•	••	·	•	• •	•				·· ,		10	0.25	+

													Inst.	P(+ A)	True Class
	Class			+	-	-	-	+	-	+	÷		1	0.95	+
ı Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00	2	0.93	+
	ТР	5	4	4	3	3	3	3	2	2			3	0.87	-
								5	<u>ک</u>				4	0.85	-
	FP	5	5	4	4	3	2	1	1	0			5	0.85	-
	TN	0	0	1	1	2	3	4	4	5			6	0.85	+
	FN	0	1	1	2	2	2	2	3	3			7	0.76	-
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4			8	0.53	+
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0			9	0.43	-
		•	••	· · · · · ·		• •				u	ŀ · ····	· 11	10	0.25	+

													Inst.	P(+ A)	True Class
	Class			+	-	-		+		+	÷		1	0.95	+
Thresho	 old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00	2	0.93	+
	ТР	5	4	4	3	3	3	3	2	2	1		3	0.87	-
													4	0.85	-
	FP	5	5	4	4	3	2	1	1	0	0		5	0.85	-
	TN	0	0	1	1	2	3	4	4	5	5		6	0.85	+
	FN	0	1	1	2	2	2	2	3	3	4		7	0.76	-
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2		8	0.53	+
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0		9	0.43	-
	,,		••	•				•	••			<u> </u>	10	0.25	+

													Inst.	P(+ A)	True Class
	Class	+	-	+	-	-				+	+		1	0.95	+
Thresho	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00	2	0.93	+
	ТР	E	4	4	3	3	2	3	2	2	1	0	3	0.87	-
	16	5	4	4	3		3		2	2		0	4	0.85	-
	FP	5	5	4	4	3	2	1	1	0	0	0	5	0.85	-
	TN	0	o	1	1	2	3	4	4	5	5	5	6	0.85	+
	FN	0	1	1	2	2	2	2	3	3	4	5	7	0.76	-
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0	8	0.53	+
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0	9	0.43	-
	ļļ	,		·	ι	••			ب	· · · · · ·			10	0.25	+

How to Construct the ROC curve

	Class	+	-	+	-	-	- -	+		+	+	
Threshold	d >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
\rightarrow	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

TPR = TP / (TP + FN) FPR = FP / (TN + FP)

Inst.	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

Test of Significance

• Given two models:

- Model M1: accuracy = 85%, tested on 30 instances
- Model M2: accuracy = 75%, tested on 5000 instances
- Can we say M1 is better than M2?
 - How much confidence can we place on accuracy of M1 and M2?
 - Can the difference in performance measure be explained as a result of random fluctuations in the test set?

Confidence Interval for Accuracy

• Prediction can be regarded as a Bernoulli trial (binomial random experiment)

- A Bernoulli trial has 2 possible outcomes
- Possible outcomes for prediction: correct or wrong
- Probability of success is constant
- Collection of Bernoulli trials has a Binomial distribution:
 - x ~ Bin(N, p) x: # of correct predictions, N trials, p constant prob.
 - e.g: Toss a fair coin 50 times, how many heads would turn up? Expected number of heads = N×p = 50 × 0.5 = 25

Given x (# of correct predictions) or equivalently, acc=x/N, and N (# of test instances)

Can we predict p (true accuracy of model)?

Confidence Interval for Accuracy

- For large test sets (N > 30),
 - acc has a normal distribution with mean p and variance p(1-p)/N

$$P(Z_{\alpha/2} < \frac{acc - p}{\sqrt{p(1-p)/N}} < Z_{1-\alpha/2})$$

• Confidence Interval for p:

$$p = \frac{2 \times N \times acc + Z_{\alpha/2}^{2} \pm \sqrt{Z_{\alpha/2}^{2} + 4 \times N \times acc - 4 \times N \times acc^{2}}}{2(N + Z_{\alpha/2}^{2})}$$

Confidence Interval for Accuracy

- Consider a model that produces an accuracy of 80% when evaluated on 100 test instances:
 - N=100, acc = 0.8
 - Let 1-α = 0.95 (95% confidence)
 - Which is the confidence interval?
 - From probability table, $Z_{\alpha/2}$ =1.96

N	50	100	500	1000	5000
p(lower)	0.670	0.711	0.763	0.774	0.789
p(upper)	0.888	0.866	0.833	0.824	0.811

1-α	Z
0.99	2.58
0.98	2.33
0.95	1.96
0.90	1.65

Comparing Performance of 2 Models

- Given two models, say M1 and M2, which is better?
 - M1 is tested on D1 (size=n1), found error rate = e_1
 - M2 is tested on D2 (size=n2), found error rate = e_2
 - Assume D1 and D2 are independent
 - If n1 and n2 are sufficiently large, then

$$e_1 \sim N(\mu_1, \sigma_1)$$

 $e_2 \sim N(\mu_2, \sigma_2)$

– Approximate variance of error rates:

$$\hat{\sigma}_{i} = \frac{e_{i}(1-e_{i})}{n_{i}}$$

Comparing Performance of 2 Models

- To test if performance difference is statistically significant: $d = e_1 e_2$
 - d ~ $N(d_{+},\sigma_{+})$ where d₊ is the true difference
 - Since D1 and D2 are independent, their variance adds up:

$$\sigma_t^2 = \sigma_1^2 + \sigma_2^2 \cong \hat{\sigma}_1^2 + \hat{\sigma}_2^2$$
$$= \frac{e!(1-e!)}{n!} + \frac{e!(1-e!)}{n!}$$
It can be shown at (1- α) confidence level, $\frac{n!}{n!}$

$$d_{t} = d \pm Z_{\alpha/2} \hat{\sigma}_{t}$$

An Illustrative Example

- Given: M1: n1 = 30, e1 = 0.15 M2: n2 = 5000, e2 = 0.25
- d = |e2 e1| = 0.1 (2-sided test to check: dt = 0 or dt <> 0)

$$\hat{\sigma}_d^2 = \frac{0.15(1 - 0.15)}{30} + \frac{0.25(1 - 0.25)}{5000} = 0.0043$$

• At 95% confidence level, $Z_{\alpha/2}$ =1.96

 $d_{t} = 0.100 \pm 1.96 \times \sqrt{0.0043} = 0.100 \pm 0.128$ => Interval contains 0 => difference may not be statistically significant

Comparing Performance of 2 Algorithms

- Each learning algorithm may produce k models:
 - L1 may produce M11 , M12, ..., M1k
 - L2 may produce M21 , M22, ..., M2k
- If models are generated on the same test sets D1,D2, ..., Dk (e.g., via cross-validation)

 $-\frac{1}{2}$

- For each set: compute $d_j = e_{1j} e_{2j}$
- d_j has mean d_t and variance $\sigma_t^2 \sum_{k=1}^{k} \sigma_t^2$
- Estimate:

$$\hat{\sigma}_{t}^{2} = \frac{j=1}{k(k-1)}$$
$$d_{t} = \overline{d} \pm t_{1-\alpha,k-1} \hat{\sigma}_{t}$$

- The lift curve is a popular technique in direct marketing.
- The input is a dataset that has been "scored" by appending to each case the estimated probability that it will belong to a given class.
- The cumulative *lift chart* (also called *gains chart*) is constructed with the cumulative number of cases (descending order of probability) on the x-axis and the cumulative number of true positives on the y-axis.
- The dashed line is a reference line. For any given number of cases (the x-axis value), it represents the expected number of positives we would predict if we did not have a model but simply selected cases at random. It provides a benchmark against which we can see performance of the model.

Notice: "Lift chart" is a rather general term, often used to identify also other kinds of plots. Don't get confused!

Lift Chart – Example

Serial no.	Predicted prob of 1	Actual Class	Cumulative Actual class
1	0.995976726	1	1
2	0.987533139	1	2
3	0.984456382	1	3
4	0.980439587	1	4
5	0.948110638	1	5
6	0.889297203	1	6
7	0.847631864	1	7
8	0.762806287	0	7
9	0.706991915	1	8
10	0.680754087	1	9
11	0.656343749	1	10
12	0.622419543	0	10
13	0.505506928	1	11
14	0.47134045	0	11
15	0.337117362	0	11
16	0.21796781	1	12
17	0.199240432	0	12
18	0.149482655	0	12
19	0.047962588	0	12
20	0.038341401	0	12
21	0.024850999	0	12
22	0.021806029	0	12
23	0.016129906	0	12
24	0.003559986	0	12

Lift Chart – Application Example

- From Lift chart we can easily derive an "economical value" plot, e.g. in target marketing.
- Given our predictive model, how many customers should we target to maximize income?
- Profit = UnitB*MaxR*Lift(X) UnitCost*N*X/100
- UnitB = unit benefit, UnitCost = unit postal cost
- N = total customers
- MaxR = expected potential respondents in all population (N)
- Lift(X) = lift chart value for X, in [0,..,1]

Lift Chart – Application Example

References

• Chapter 3. Classification: Basic Concepts and Techniques.

