Data Mining Cluster Analysis: Basic Concepts and Algorithms

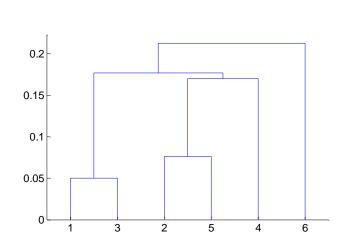
Lecture Notes for Chapter 7

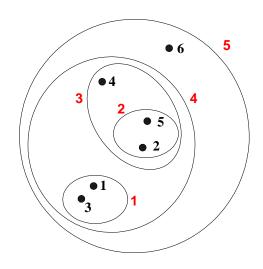
Introduction to Data Mining, 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits





Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

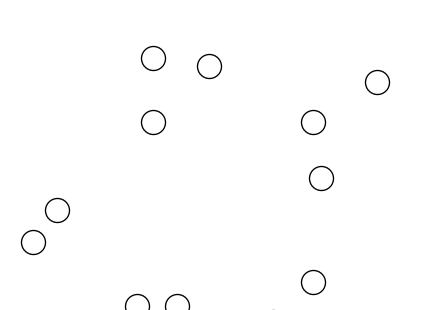
- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains an individual point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

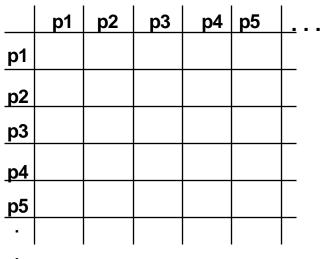
Agglomerative Clustering Algorithm

- Most popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

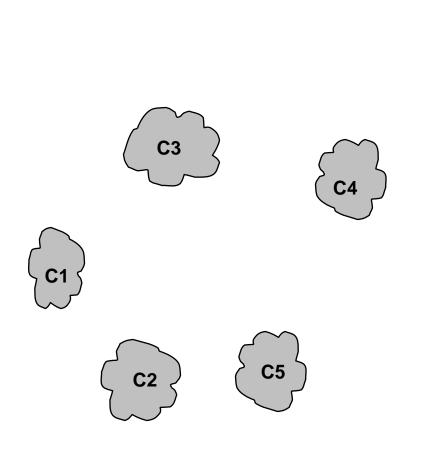
Start with clusters of individual points and a proximity matrix





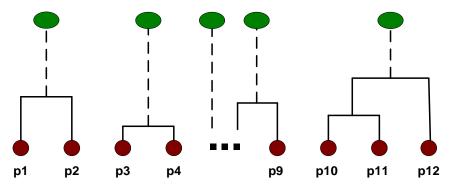
Intermediate Situation

After some merging steps, we have some clusters



	C 1	C2	C 3	C 4	C 5
<u>C1</u>					
C2					
C 3					
<u>C4</u>					
C 5					

Proximity Matrix



Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and

C2

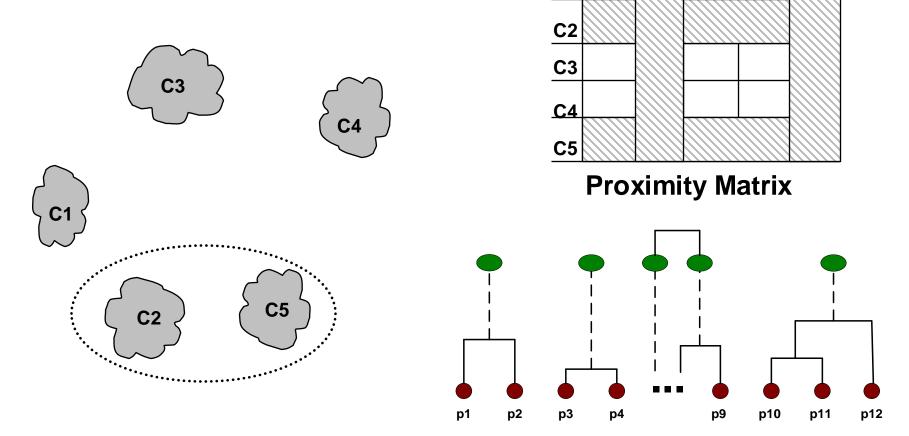
C1

C3

C5

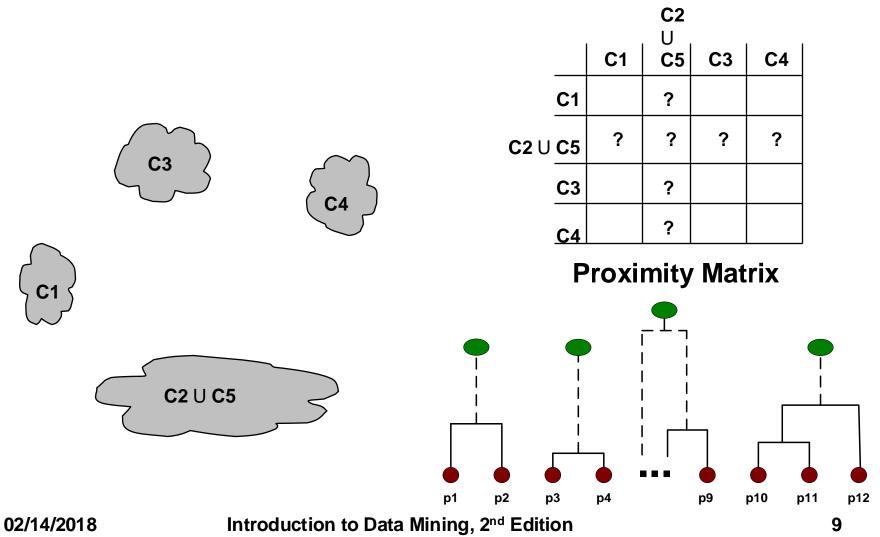
C4

update the proximity matrix.

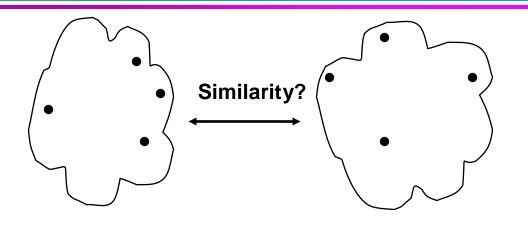


After Merging

The question is "How do we update the proximity matrix?"

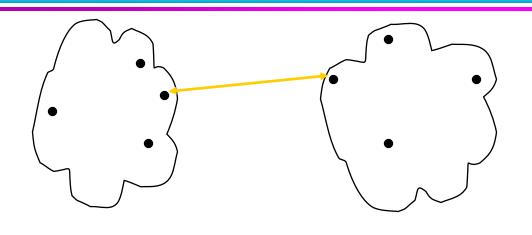


How to Define Inter-Cluster Distance



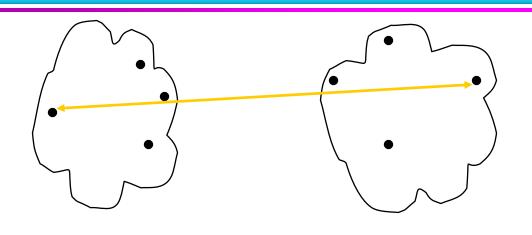
	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
рЗ						
p4						
р5						

- MIN
- □ MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



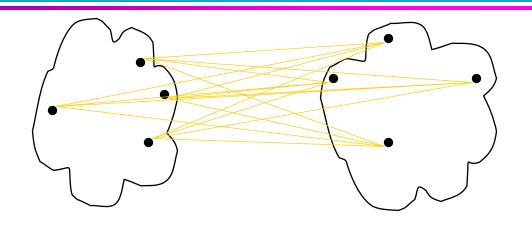
	p 1	p2	рЗ	p4	p 5	<u> </u>
p 1						
p2						
р3						
<u>p4</u>						
р5						
_						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



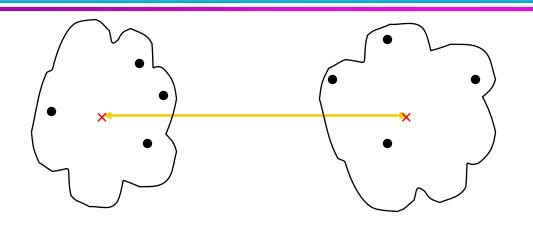
	p 1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
рЗ						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



	p 1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
рЗ						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



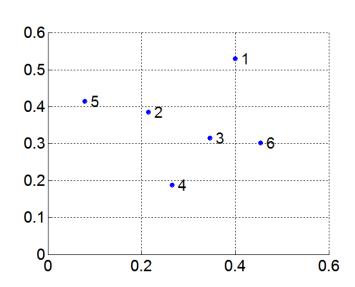
	p 1	p2	рЗ	p4	p5	<u> </u>
р1						
p2						
рЗ						
p 4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

MIN or Single Link

- Proximity of two clusters is based on the two closest points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph

Example:



Distance Matrix:

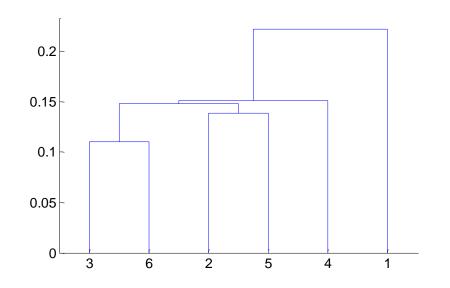
	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MIN

3 Nested Clusters

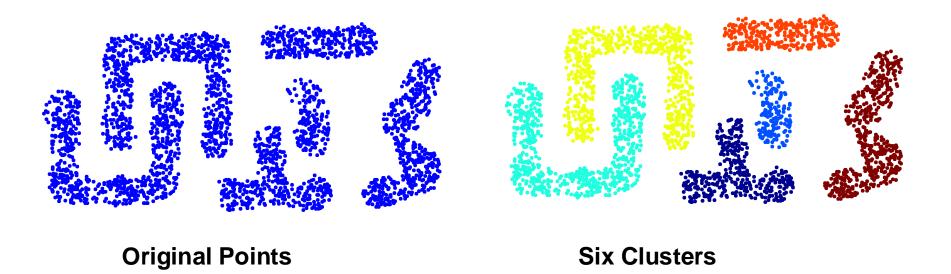
Distance Matrix:

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00



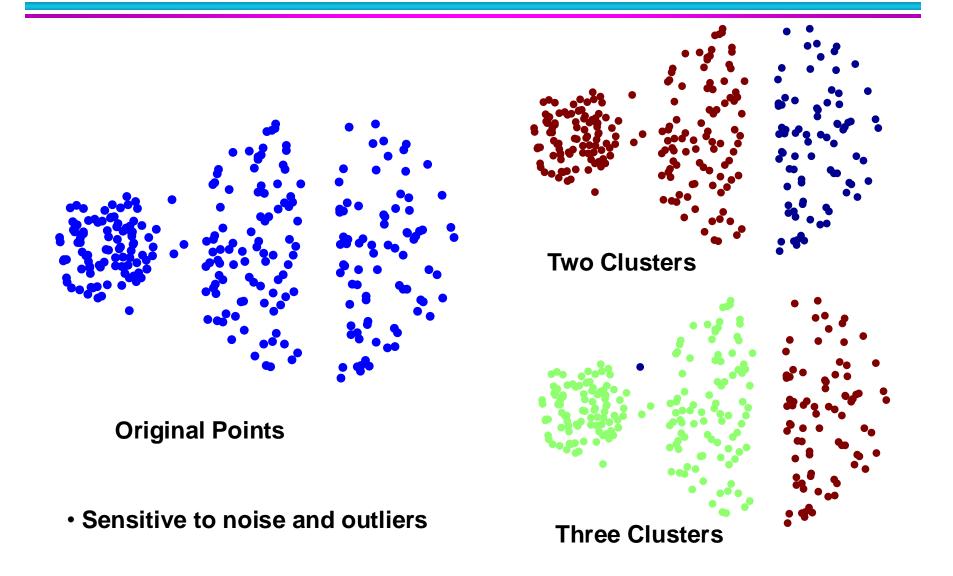
Dendrogram

Strength of MIN



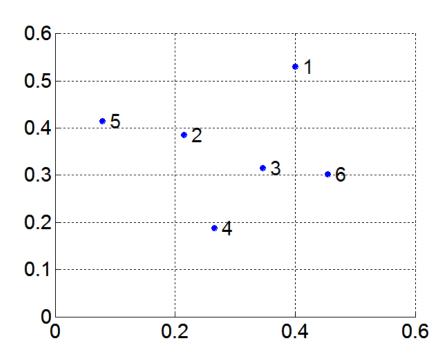
Can handle non-elliptical shapes

Limitations of MIN



MAX or Complete Linkage

- Proximity of two clusters is based on the two most distant points in the different clusters
 - Determined by all pairs of points in the two clusters



Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MAX

Distance Matrix:

p3

0.22

p4

 p_5

p6

0.23

p2

p1

0.25

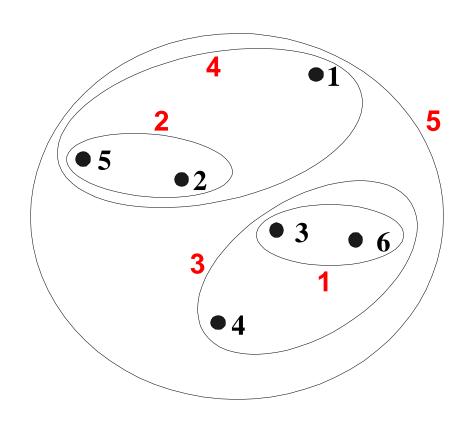
0.2

0.15

0.1

0.05

3



	p2	0.24	0.00	0.15	0.20	0.14	0.25
	p3	0.22	0.15	0.00	0.15	0.28	0.11
	p4	0.37	0.20	0.15	0.00	0.29	0.22
	p5	0.34	0.14	0.28	0.29	0.00	0.39
	p6	0.23	0.25	0.11	0.22	0.39	0.00
	0.4						
(0.35						
	0.3						

Nested Clusters

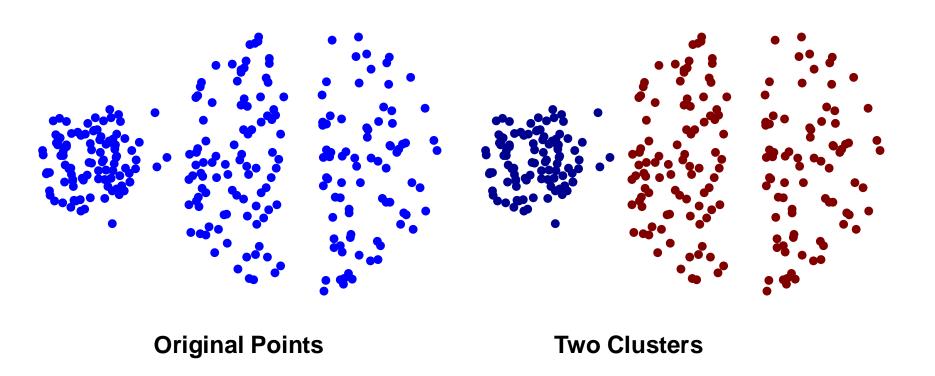
Dendrogram

6

5

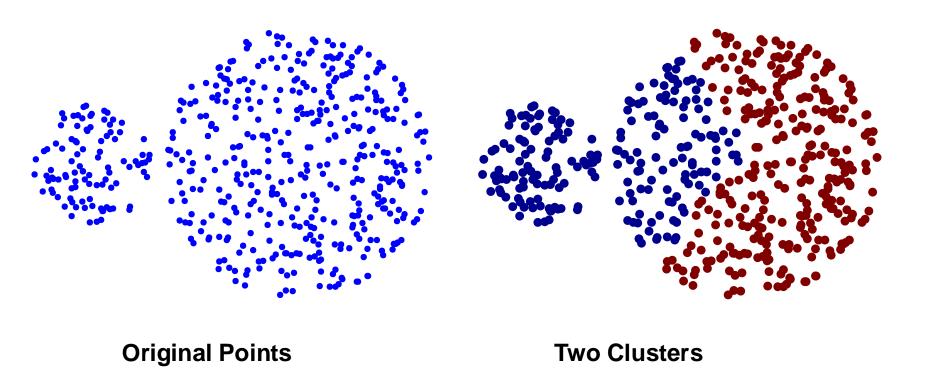
2

Strength of MAX



Less susceptible to noise and outliers

Limitations of MAX



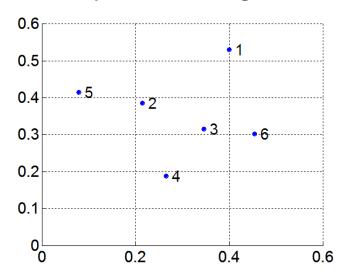
- Tends to break large clusters
- Biased towards globular clusters

Group Average

Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$\begin{aligned} & \sum_{p_i \in Cluster_i} proximity(p_i, p_j) \\ proximity(Cluster_i, Cluster_j) &= \frac{p_i \in Cluster_i}{p_j \in Cluster_i} \\ & | Cluster_i | \times | Cluster_i | \end{aligned}$$

 Need to use average connectivity for scalability since total proximity favors large clusters

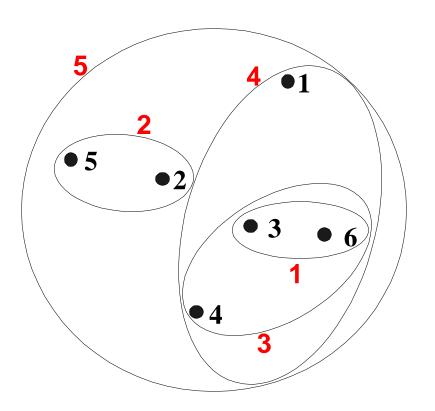


Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: Group Average

Distance Matrix:



	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00



Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

Compromise between Single and Complete Link

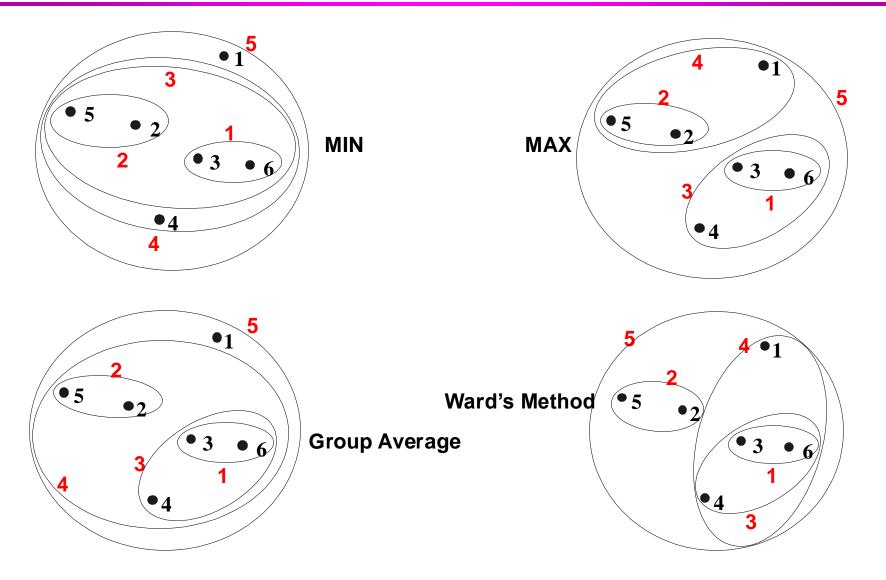
- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

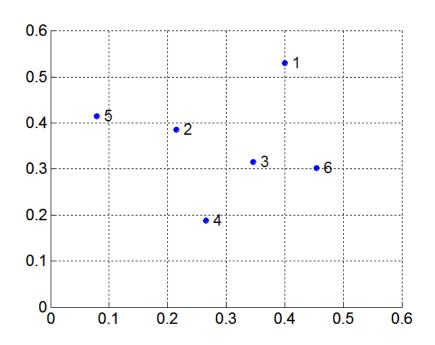
Hierarchical Clustering: Comparison

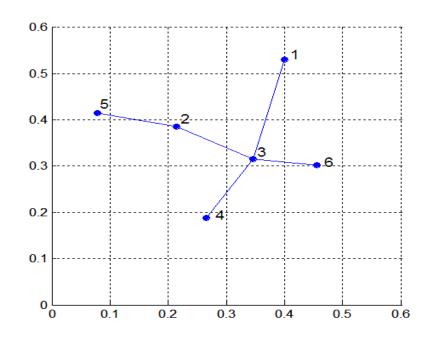


MST: Divisive Hierarchical Clustering

Build MST (Minimum Spanning Tree)

- Start with a tree that consists of any point
- In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not
- Add q to the tree and put an edge between p and q





MST: Divisive Hierarchical Clustering

Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

Hierarchical Clustering: Time and Space requirements

- \square O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- □ O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time with some cleverness

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No global objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling clusters of different sizes and nonglobular shapes
 - Breaking large clusters