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Also for time series: know your data

* For preparing data for data mining task it is essential
to have an overall understanding of your data

* Gain insight in your data
— with respect to your project goals
— and general to understand properties

* Find answers to the questions
— How is the data quality?
— What about outliers?
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Which is the type of data?
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Types of data sets

Time series

A collection of observations that are sequential in
time, generally at constant time intervals.
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Series

A univariate series X iIs a sequence of values
[x4{, X5, ...x_n] In adomain X.

A series Is defined by:

« Type: discrete, e.g., nucleotide bases, or continuous,
e.g., stock values in a financial market

« Sampling rate: How often values are sampled, e.g.,
daily

« Amplitude: Values sampled, e.g., value of the stock
on a particular day
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Series

A multivariate time series X Is a sequence that
generalizes to multiple variables. Each instance Is
comprised of multiple time series, each representing a
different feature.

Time Series Plot of the 'EuStockMarkets' Time-Series
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TS are ubiquitos

* You can measure many things ... and things change
over time.

— Blood pressure

— Donald Trump’s popularity rating

— The annual rainfall in Pisa

— The value of your stocks

* |n addition other data type can be considered as

time series

— Text data: words count

— Images: edges displacement

— Videos: object positioning
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TS are ubiquitos
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Time series characteristics

* Large amount of data.

* Similarity is not easy to estimate.
* Different data formats.

* Different sampling rates.

* Noise, missing values, etc.
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Time series understanding

|. Look for trends
2. Check for seasonality, cyclicity, irregularities

3. Look for noise
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Time series statistics

* Mean: the expected value of the time series
* Variance: variance of the time series

* Trends: the slope of a linear model that models the
time series behavior

* Interquartile ranges: check the distributions
* Skewness: is the distribution symmetric?

* Kurtosis: what is the probability mass on the tails?
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Trend

It is a long-term movement of the time series. It is non repeating.

Technically, it is a slope delta of a linear model, modelling the time
series X.
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Seasonality

It is a regular periodic occurrence within a time

interval, usually smaller than a year.
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Cycle

It is a repeated fluctuation long in duration but
not as much as a trend.
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Time series analysis

To analyze and compare different time series,
we first need to pre-process them such that
they have all the same format.
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Time series analysis

 Often we need to employ Euclidean distance to
analyze/compare time series. Euclidean distance is
very sensitive to “distortions” in the data.
 These distortions are dangerous and should be
removed.
e Most common distortions:
e Offset Translation
 Amplitude Scaling
 Linear Trend
* Noise
* They can be removed by using the appropriate
transformations.
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Offset translation to remove distortions
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Amplitude scaling

Objective: compare inherent patterns in different TS independently of their magnitudes.
Normalize the amplitude: divide by the standard deviation of the TS.

T
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Q =(Q - mean(Q)) / std(Q)

C =(C- mean(C)) / std(C)
D(Q,C)
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TS: rolling statistics

The time series may be huge. Analyzing it in its entirety may be
difficult.

A solution is to employ the ‘rolling” method, in which the TS is
analyzed extracting a series of consecutive subsequences of
fixed length. Each sub-series gives a different view on TS and its
called window.

Given a window, each locality can now be described.
Examples are: rolling mean, rolling std etc.

MW
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Moving average for noise removal

* Noise can be removed by a moving
average (MA) that smooths the TS. o 2 0
 Given a window of length wandaTSt, 3 2 | | 240
the MA is applied as follows t4 26 | 243
w Z] l’ W/2 t for l 1 white noise

* For example, if w=3 we have
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TS: rolling statistics

o Rolling Statistics ( Visual )

— Rolling Mean & Standard Deviation
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Plot the moving average or moving variance
to check if it varies with time.

Motice the mean and variance increase
constantly
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TS: sliding statistics

Given a window, we can slide it through the entire TS and
compute some kind of metric on the entire TS.

Similar to the convolution, we apply to the TS a mask sliding
over the entire TS.

M
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TS: sliding statistics — auto-covariance

How much does a component of a TS correlate with the
previous and future components?

How to: compute the covariance between two components of
the TS using the formula:

. D i1 (Ye Y)(Y: «—Y)
/)l\ B S:, l().{ )—,)_,

where: : .
High auto-covariance may

indicate seasonality
* pi: Autocorrelation at lag k

* Y,: Value of the series at time ¢
* Y:Mean of the series

n: Number of observations
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TS: why all of these statistics!?

Before the application of any statistical model to TS, we need to
analyze and pre-process them so that we can have stationary

data.

Stationary: consistent means, variance and covariance over
time. No trends, seasonality and so on. No predictable patterns.

Obtaining stationary TS may simplify tasks as classification or
forecasting.
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TS: how to know if they are stationary!?
1. Apply rolling statistics and see

if there are high covariance | oiﬁ::ll':im:t':t :'S"ta”
means presence of trends or O
seasonality). i
2. Inthe plot, we can see that =
the std is constant but mean - |
is going up as trend. Hence it —W
IS not stationary - ~

Plot the moving average or moving variance
to check if it varies with time.

Motice the mean and variance increase
constantly
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TS: how to know if they are stationary!?

We can conduct statistical tests, . DickeyPullertest (Statiical) @)
such as the Augmented Dickey- o l
L pveloe o 001850
Fuller test: The test statistic looks fiigs ised e
. . . . r-Jur_nbgr* of Observations Used 1308.0e800e
for a unit root: if there is, it Critical Vel (5 Eifro
. Critical value (18%) -2.57877@
means that the TS is not dtype: Floates
stationary.

Null Hypothesis = TS is non-stationary

If ‘Test Statistic’ < ‘Critical Value’,
Reject the null hypothesis

UNIVERSITA DI PisA



TS: how to make them stationary!?

We can conduct statistical tests, . DickeyPullertest (Statiical) @)
such as the Augmented Dickey- o l
L pveloe o 001850
Fuller test: The test statistic looks fiigs ised e
. . . . r-Jur_nbgr* of Observations Used 1308.0e800e
for a unit root: if there is, it Critical Vel (5 Eifro
. Critical value (18%) -2.57877@
means that the TS is not dtype: Floates
stationary.

Null Hypothesis = TS is non-stationary

If ‘Test Statistic’ < ‘Critical Value’,
Reject the null hypothesis

UNIVERSITA DI PisA



Linear trend

Removing linear trend: fit the best fitting straight line to the
time series, then subtract that line from the time series.

Removed linear trend,

offset translation,
amplitude scaling
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Noise removal

The intuition behind removing noise is to average each datapoints value with its

neighbors.
8
J _
A I Q=smooth(Q)
o 1 C=smooth(C)
of 1 D(Q,C)
4
4 20 40 60 80 100 120 140 % 20 40 60 80 100 120 140

UNIVERSITA DI PisA



Log transformation

You can apply the natural logarithm or the base 10 logarithm for stabilizing the
variance, for linearizing trends, improve normal distribution.

Non-Stationary Time Series
Log-Transformed Time Series
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Log transformation: pros/cons

1. Data must be positive

2. Alittle bit more difficult to interpret since the space
of the data is changed, hence the info and pattern
may be more difficult to comprehend

3. Masking not always easy (how to handle zero?)
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