
Ensemble Methods

Ensemble Methods

• Improves the accuracy by
aggregating the predictions of
multiple classifiers.

• Construct a set of base classifiers
from the training data.

• Predict class label of test records
by combining the predictions
made by multiple classifiers.

Back to Machine Learning

It will exploit Wisdom of crowd ideas for specific tasks

• By combining classifier predictions and

• aims to combine independent and diverse classifiers.

But it will use labelled training data

• to identify the expert classifiers in the pool;

• to identify complementary classifiers;

• to indicate how to the best combine them.

Why Ensemble Methods work?

•

Types of Ensemble Methods

• Manipulate data distribution

• Example: bagging, boosting

• Manipulate input features

• Example: random forests

• Manipulate class labels

• Example: error-correcting output coding

Bagging

Bagging (a.k.a. Bootstrap AGGregatING)

• Sampling with replacement

• Build classifier on each bootstrap sample

• Each sample has probability (1 – 1/n)n of being selected

Bagging Example

• Consider 1-dimensional data set:

• Classifier is a decision stump
• Decision rule: x <= k versus x > k

• Split point k is chosen based on entropy

x ≤ k

yleft yright

True False

Bagging Example

Bagging Example

Bagging Example

Bagging Example

• Summary of Training sets:

Bagging Example

• Assume test set is the same as the original data

• Use majority vote to determine class of ensemble classifier

Predicted Class

Boosting

Boosting

• An iterative procedure to adaptively change distribution of training
data by focusing more on previously misclassified records.

• Initially, all the records are assigned equal weights.

• Unlike bagging, weights may change at the end of each boosting
round.

Boosting

• Records that are wrongly classified will have their weights increased.

• Records that are classified correctly will have their weights
decreased.

● Example 4 is hard to classify

● Its weight is increased; therefore it is more

likely to be chosen again in subsequent rounds

AdaBoost

• Base classifiers: C1, C2, …, CT

• Error rate:

• Importance of a classifier depends on its
error rate:

High positive importance when error is close to 0,
High negative importance when error is close to 1

AdaBoost Algorithm

• Weight update:

• If any intermediate rounds produce error rate higher than 50%, the
weights are reverted back to 1/n and the resampling procedure is
repeated

• Classification:

Weight associated
to xi during the j
boosting round

AdaBoost Algorithm

AdaBoost Example

• Consider 1-dimensional data set:

• Classifier is a decision stump
• Decision rule: x ≤ k versus x > k

• Split point k is chosen based on entropy

x ≤ k

yleft yright

True False

AdaBoost Example

• Training sets for the first 3 boosting rounds:

• Weights:

AdaBoost Example

• Summary:

• Classification

Predicted

Class

Random Forests

Random Forests

• Is a class of ensemble
methods specifically designed
for decision trees.

• It combines the predictions
made by multiple decision
trees and outputs the class
that is the mode of the class's
output by individual trees.

Only Bagging?

• With bagging we have an ensemble of structurally similar trees. This
causes highly correlated trees.

• Random Forest aims at creating trees that have no correlation or
weak correlation.

RF solution

•

Random Forest - Advantages

• It is one of the most accurate learning algorithms available. For many
data sets, it produces a high accurate classifier.

• It runs efficiently on large databases.

• It can handle thousands of input variables without variable deletion.

• It gives estimates of what variables are important in the classification.

• It generates an internal unbiased estimate of the generalization error
as the forest building progresses.

Final Thoughts on Random Forests

• When the number of attributes is large, but the number of relevant
predictors is small, random forests can perform poorly.

• In each split, the chances of selected a relevant attribute will be low and
hence most trees in the ensemble will be weak models.

• Increasing the number of trees in the ensemble generally does not
increase the risk of overfitting.

• Decomposing the generalization error in terms of bias and variance, we
see that increasing the number of trees produces a model that is at least as
robust as a single tree.

• However, if the number of trees is too large, then the trees in the
ensemble may become more correlated, increase the variance.

References

• Ensemble Methods. Chapter 5.6.
Introduction to Data Mining.

LightGBM

1. Based on the concept of gradient boosting

2. Designed for large datasets

3. Fast and scalable

4. Based on leaf-wise tree growth strategy

What is gradient boosting?

It is based on the concept of gradient descent.

We train the model by minimizing the loss function.

Hence we need (again!):

1. Loss function

2. Learning rate

What is gradient boosting?

Gradient because it exploits the gradients of the loss

function to find the direction in which we improve our model.

Boosting because it combines weak learners, focusing on the

previous errors.

LightGBM: step by step

1. Start with an initial prediction (prior probability)

2. Evaluate the residuals (difference between the prediction

and the correct outcome). Mathematically:

1. Train a DT on the training set and its residuals. The target is

not anymore the classes, but the residuals. The objective is

to reduce the model errors, hence we can focus on the

biggest residuals

LightGBM: step by step

1. The tree predictions are used to update the model:

We scale it by a learning rate

The intuition is that, adding tree by tree, you correct the errors

and obtain a better model.

LightGBM: leaf-wise growth strategy

LightGBM: leaf-wise growth strategy

LightGBM: step by step

LightGBM grows the leaf based on the split that gives the

highest reduction in the loss function (the maximum gain).

For this reason the final tree has a strange structure, with

different levels.

LightGBM: step by step

1. Fast

2. Fewer trees in the end: since the trees can grow deep

where needed (instead of uniformly across all paths),

LightGBM often requires fewer trees to achieve the same

performance as level-wise growth.

3. Good accuracy

4. If we have small dataset, this method can overfit

LightGBM: pros

1. Good Accuracy

2. Fewer trees thanks to leaf-wise growth

3. Fast, low memory usage

4. Good with big datasets

5. Handle imbalance datasets

6. To control overfitting, it uses regularization terms

LightGBM: cons

1. Overfitting when small datasets are used

2. Needs a good parameter tuning

3. Difficult to handle sparse data (XGBoost may be a good

option)

4. Difficult in handling categorical (CatBoost may be a good

option)

A recap: ML pipeline

Representation learning

Representation learning

Representation learning is a method of training a ML

model to discover and learn the most useful

representations of input data automatically.

Representation learning offers a way for machines to

autonomously grasp and condense the information stored

in large datasets, making the steps in ML that follow after

more informed and efficient.

Autoencoders, CNN, DNN

To achieve representation learning we use Deep Neural Networks.

As an example, we can consider Autoencoder.

It is a type of neural network that learns to encode input data into a

lower-dimensional, and thus more compact, form. The network then

uses this encoded form to reconstruct the original input. The

encoding process discovers and extracts essential features in the

data, while the decoding process ensures that the extracted

features are representative of the original data.

Autoencoders, CNN, DNN

Autoencoders, CNN, DNN

Why are they better?

1. IN MODEL FEATURE REPRESENTATION: They create an internal

representation with novel variables, while the models seen so far, instead,

work on the original representation of the data (the variables we fed to the

model).

2. SUFFICIENT MODEL COMPLEXITY : They can be arbitrarly complex and hence

they can work with complex data, while some methods, like logistic

regression are much easier.

3. LAYER-BY-LAYER pre-processing: the structure of the NN allows a layer by

layer analysis.

Deep Forest

However, recently, a novel model has been proposed. It is NOT

a NN, but it achieves great performance and is able to perform

also representation learning.

It uses:

1. Random Forests

2. Completely Random Forest (trees are generated without

any deterministic heuristic)

Deep Forest

A tree-based ensemble method, with a cascade structure.

1. Layer-by-layer -> cascade structure

Deep Forest

Deep Forest

A tree-based ensemble method, with a cascade structure.

2. Complexity -> just add layers to the cascade + attention in

overfitting the forests!

Deep Forest

A tree-based ensemble method, with a cascade structure.

3. Representation learning -> multi-grained scanning

Deep Forest

	Slide 1: Ensemble Methods
	Slide 2: Ensemble Methods
	Slide 3: Back to Machine Learning
	Slide 4: Why Ensemble Methods work?
	Slide 5: Types of Ensemble Methods
	Slide 6: Bagging
	Slide 7: Bagging (a.k.a. Bootstrap AGGregatING)
	Slide 8: Bagging Example
	Slide 9: Bagging Example
	Slide 10: Bagging Example
	Slide 11: Bagging Example
	Slide 12: Bagging Example
	Slide 13: Bagging Example
	Slide 14: Boosting
	Slide 15: Boosting
	Slide 16: Boosting
	Slide 17: AdaBoost
	Slide 18: AdaBoost Algorithm
	Slide 19: AdaBoost Algorithm
	Slide 20: AdaBoost Example
	Slide 21: AdaBoost Example
	Slide 22: AdaBoost Example
	Slide 23: Random Forests
	Slide 24: Random Forests
	Slide 25: Only Bagging?
	Slide 26: RF solution
	Slide 27: Random Forest - Advantages
	Slide 28: Final Thoughts on Random Forests
	Slide 29: References
	Slide 30: LightGBM
	Slide 31: What is gradient boosting?
	Slide 32: What is gradient boosting?
	Slide 33: LightGBM: step by step
	Slide 34: LightGBM: step by step
	Slide 35: LightGBM: leaf-wise growth strategy
	Slide 36: LightGBM: leaf-wise growth strategy
	Slide 37: LightGBM: step by step
	Slide 38: LightGBM: step by step
	Slide 39: LightGBM: pros
	Slide 40: LightGBM: cons
	Slide 41: A recap: ML pipeline
	Slide 42: Representation learning
	Slide 43: Representation learning
	Slide 44: Autoencoders, CNN, DNN
	Slide 45: Autoencoders, CNN, DNN
	Slide 46: Autoencoders, CNN, DNN
	Slide 47: Why are they better?
	Slide 48: Deep Forest
	Slide 49: Deep Forest
	Slide 50: Deep Forest
	Slide 51: Deep Forest
	Slide 52: Deep Forest
	Slide 53: Deep Forest

