
Logistic Regression Classifiers
Francesca Naretto

Computer Science Department

Introduction to Data Mining, 2nd Edition

Chapter 5.2

Logistic Regression Classifiers

• A classifier, supervised learning

• A statistical approach and a Machine Learning

algorithm, based on the concept of probabilities.

• It exploits a sigmoid function

Logistic Regression Classifiers

Decision tree boundaries:

Logistic regression:

Logistic Regression Classifiers

Sigmoid Function is a mathematical function used to map the
predicted values to probabilities. The function has the ability to
map any real value into another value within a range of 0 and 1.

Logistic Regression Classifiers

Given a binary classification task and a record x to classy: we
want to know the probability that the record x is a member of
class 1. 𝑃(𝑦 = 1|𝑥)

Logistic Regression Classifiers

Given a binary classification task and a record x to classy: we
want to know the probability that the record x is a member of
class 1. 𝑃(𝑦 = 1|𝑥)

To solve this task, Logistic Regression learns weights and bias
terms.

The record x is composed by a set of features, and the logistic
regression models tries to find a weight for each of the features.
The weight can be positive (towards the positive class) or
negative (towards the negative class). The bias, instead, is a
number that is added to the total.

Logistic Regression Classifiers

Let’s assume that the LG is already been trained.

To make a decision, we first need to:

𝑧 = ෍

𝑖=1

𝑛

𝑤𝑖 + 𝑥𝑖 + 𝑏

Where w are the weights associated with the variables, and b is
the bias.

The value of z ranges from (−∞,+∞) since the weights and bias
are real values, hence they are not limited.

To obtain a probability, we pass z through the sigmoid function.
Hence, we calculate 𝑃(𝑦 = 1|𝑥).

We obtain a number between 0 and 1.

Logistic Regression Classifiers

Logistic regression requires the concept of threshold. The
threshold value defines the class 0 or 1.

Logistic Regression

The threshold is also called decision boundary, here it is at 0.5.

Logistic Regression: training

For training, we need two components:

1. A cost function (or loss function) which evaluates the
distance between the prediction and its correct label.

2. An optimization algorithm that iteratively updates the
weights to minimize the loss function (minimize the distance)

Logistic Regression: cost function
Our objective is to learn the weights that maximize the
probability of the correct label 𝑝 𝑦 𝑥 , 𝑦 ∈ 0,1 .

Since we can only have 2 outcomes, this can be represented by a
Bernoulli distribution.

𝑝 𝑦 𝑥 = ധ𝑦𝑦 1 − ധ𝑦 1−𝑦

Let’s apply the log:
log 𝑝 𝑦 𝑥 = log ധ𝑦𝑦 1 − ധ𝑦 1−𝑦

𝑦𝑙𝑜𝑔ധ𝑦 + 1 − 𝑦 log(1 − ധ𝑦)

We obtain the log likelihood that we want to maximize.

For the cost function, we need something to minimize, hence we
flip the sign:

𝐿𝐶𝐸 ധ𝑦, 𝑦 = − log 𝑝 𝑦 𝑥 = −[𝑦𝑙𝑜𝑔ധ𝑦 + 1 − 𝑦 log 1 − ധ𝑦]

Logistic Regression: minimum

Our goal is to:

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃(
1

𝑚
෍

𝑖=1

𝑚

𝐿𝐶𝐸(𝑓 𝑥𝑖; 𝜃 , 𝑦𝑖))

Which, put simply, means finding the minimum of our cost
function.

How to find the minimum?

Logistic Regression: gradient descent

To find the minimum of the cost function, we can
exploit the gradient descent algorithm.

Logistic Regression: gradient descent

To find the minimum of the cost function, we can
exploit the gradient descent algorithm.

Logistic Regression: gradient descent

1. We find the gradient of the cost function of the
point in which we are

2. We move in the opposite direction of the gradient

3. We do this until we reach the minimum**

Logistic Regression: gradient descent

With the sigmoid
function we are in a
convex setting!

Logistic Regression: gradient descent

The gradient descent gives us the direction of the
minimum, but how to understand how big the step
should be?

Learning rate

1. Big steps: you find faster the minimum, if you only
have one minimum (what about the local
minimum?)

2. Small steps: slow learner, but you don’t miss
anything

Logistic Regression: gradient descent

How to compute the gradient descent?

𝑤 = 𝑤 − 𝛼
𝜕𝐿𝐶𝐸
𝜕𝑤𝑗

Logistic Regression: gradient descent

How to compute the gradient descent?

𝑤 = 𝑤 − 𝛼
𝜕𝐿𝐶𝐸
𝜕𝑤𝑗

Applying the chain rule and the derivative of the log:

Logistic Regression: gradient descent

How to compute the gradient descent?

𝑤 = 𝑤 − 𝛼
𝜕𝐿𝐶𝐸
𝜕𝑤𝑗

Applying the chain rule and the derivative of the sigmoid:

Stochastic gradient descent

It is an online algorithm that minimizes the loss
function by computing the gradient after each training
example.

Batch gradient descent

Since computing the gradient for each record may
results in strange movements, not always ‘correct’.

A solution may be to update the gradient after all the
training records, or after small parts of it.

Underfitting, overfitting

As for the decision trees, we want a model able to
generalize well (hence, avoid under/overfitting).

In this case, to avoid overfitting, we can introduce a
regularization term to the loss function, able to
penalize large weights.

If a set of weights fits perfectly the training, they are
going be high. Hence, the regularization term penalizes
this setting.

Regularization

L2 regularization (Ridge regression) is a quadratic
function of the weight values:

𝑅 𝜃 = 𝜃
2
= ෍

𝑖=1

𝑛

𝜃𝑖
2

L1 (Lasso Regression) is a linear function of the weight
values (Manhattan distance):

𝑅 𝜃 = 𝜃 = ෍

𝑖=1

𝑛

|𝜃𝑖|

Regularization

The regularization term is added to the loss function,
hence for the gradient descent we need to compute its
gradient (its derivative).

1. L2 is easier to optimize since its derivative is simple

2. L1 has a more complex derivative

3. L2 tends to favor solutions with smaller weights for
all of the features

4. L1 tends to favor solutions sparse, where there are
few high weights and a lot of smaller/zero ones

What about more than 2 classes?

In this case we talk about multinomial logistic
regression. Our loss function:

𝐿𝐶𝐸 ധ𝑦, 𝑦 = −[𝑦𝑙𝑜𝑔ധ𝑦 + 1 − 𝑦 log 1 − ധ𝑦]

Is limited to 2 classes. To extend it for multiple classes,
we need to consider vectors:

True label vector:

Prediction probabilities vector:

1

What about more than 2 classes?

What about the novel version of the loss?

𝐿𝐶𝐸 𝑦, 𝑦 = −෍

𝑘=1

𝐾

𝑦𝑘log(𝑦𝑘)

𝐿𝐶𝐸 𝑦,𝑦 = − log 𝑦
𝑐

Where c is the correct class (only one at a time).
𝐿𝐶𝐸 𝑦,𝑦 = − log 𝑝 𝑦𝑐 = 1 𝑥)

	Introduction Big Data
	Slide 1: Logistic Regression Classifiers
	Slide 2: Logistic Regression Classifiers
	Slide 3: Logistic Regression Classifiers
	Slide 4: Logistic Regression Classifiers
	Slide 5: Logistic Regression Classifiers
	Slide 6: Logistic Regression Classifiers
	Slide 7: Logistic Regression Classifiers
	Slide 8: Logistic Regression Classifiers
	Slide 9: Logistic Regression
	Slide 10: Logistic Regression: training
	Slide 11: Logistic Regression: cost function
	Slide 12: Logistic Regression: minimum
	Slide 13: Logistic Regression: gradient descent
	Slide 14: Logistic Regression: gradient descent
	Slide 15: Logistic Regression: gradient descent
	Slide 16: Logistic Regression: gradient descent
	Slide 17: Logistic Regression: gradient descent
	Slide 18: Logistic Regression: gradient descent
	Slide 19: Logistic Regression: gradient descent
	Slide 20: Logistic Regression: gradient descent
	Slide 21: Stochastic gradient descent
	Slide 22: Batch gradient descent
	Slide 23: Underfitting, overfitting
	Slide 24: Regularization
	Slide 25: Regularization
	Slide 26: What about more than 2 classes?
	Slide 27: What about more than 2 classes?

