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We  present  randomized  algorithms  to  solve  the 
following  string-matching  problem  and  some  of 
its  generalizations:  Given  a  string X of  length n 
(the  pattern) and  a  string Y (the  text),  find  the 
first  occurrence  of X as a  consecutive  block 
within Y. The  algorithms  represent  strings  of 
length  n  by  much  shorter  strings  called 
fingerprints,  and  achieve  their  efficiency  by 
manipulating  fingerprints  instead  of  longer 
strings.  The  algorithms  require  a  constant 
number  of storage  locations,  and  essentially  run 
in real time.  They  are  conceptually  simple  and 
easy to  implement.  The  method  readily 
generalizes  to  higher-dimensional  pattern- 
matching  problems. 

0. Introduction 
Text-processing  systems  must  allow their users to search  for 
a given character string within a body of text. Database 
systems must be capable of searching for records  with stated 
values in specified  fields. Such problems are instances of 
the following string-matching problem: For a specified  set 
( (X( i ) ,  Y(i)))  of pairs of strings, determine, if  possible, an r 
such that X(r) = Y(r). Usually the set is  specified not by 
explicit enumeration of the pairs, but rather by a rule for 
computing the pairs (X(i), Y(i)) from some given data. 
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We present a randomized algorithm to solve this problem. 
The algorithm  associates  with  each  string X a fingerprint 
I#@') which  is much shorter than the string itself. The search 
for a match then compares short fingerprints  instead of long 
strings. 

The algorithm selects thejngerprint function & at random 
from a family of easy-to-compute functions. No matter 
which input ( (X( i ) ,  Y(i ) ) )  is presented, the algorithm is 
unlikely to produce a false match, in  which  two  fingerprints 
agree  even though the original  strings do not. 

The most widely studied pattern-matching problem  is the 
following:  Given a pattern X of length n and a text Y of 
length m 2 n, find the first  occurrence  of X as a consecutive 
substring of Y. Several linear time algorithms have  been 
given  for this problem. The algorithms of Knuth,  Moms, 
and Pratt [ I ]  (KMP in the sequel) and of  Boyer and Moore 
[2] require, for fast implementation, O(n) registers to store a 
table of pointers. The characters of the text Y can come in a 
stream and require no storage.  But  for  fast implementation it 
is  useful to have portions of Y in main memory. The 
algorithm of Galil and Seiferas [ 31 requires  only @log n) 
registers.  Recently Galil and Seiferas [4] have found a real- 
time algorithm using a constant number of  registers. 

Our method, based  on  fingerprint functions, runs 
essentially in real time; the exact  meaning of this statement 
is  spelled out in Theorem 4. It requires a constant number of 
registers and needs a substring of length n of the text in main 
memory. One version,  described by Algorithm 3, runs 
strictly in real time but allows a provably minuscule 
probability of error. 

produce the same theoretical time bounds as the 
deterministic algorithms and require a competitive or 

A considerable  advantage of our algorithms is that they 
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smaller number of  registers.  At the same time they are 
conceptually  very  simple and consequently  easy to program. 
For the classical linear string-matching case,  they  become 
practically competitive only  for rather long patterns, say 
n = 200. For  such  long patterns it  would  seem that storing 
pointer tables in registers  is not feasible, so the classical 
algorithms would slow down. 

Our methods also  apply  when the pattern is a 
multidimensional rectangular array of symbols or even an 
irregularly  shaped arrangement of symbols.  In  such 
applications our time bounds are superior to those 
previously  known [5 ,  61. Baker [ 5 ]  has a linear-time 
algorithm for d-dimensional arrays, but it requires 
substantially more storage than our method. Bird [7]  also 
has a linear-time algorithm  for  two-dimensional arrays with 
a storage requirement comparable to ours. Neither Baker's 
method nor Bird's applies to irregular  shapes. 

literature on randomized algorithms [8]  and provides further 
evidence of the efficacy  of algorithms that flip  coins. 

This work  is a contribution to the growing  body  of 

1. An example 
In order to familiarize the reader  with our approach and 
demonstrate the extreme simplicity of the algorithm, let us 
describe one version  for the case  of linear string matching. 
Let the pattern and text be,  respectively, 

X =  X l X 2  . . . x,,  x, E (0, l ) ,  

y = YIY, . . . Y,, YjE IO, 11. 

The restriction to the (0, 1 ilphabet is just for convenience. 
Let Y(i) = y,y,+, . . . y,+,,-,; then a match occurs ifX = Y(i). 
Define 

a = x12"-' + . . . + X", 

a(i) = ~ ~ 2 ' " '  + . . . + y,+,-,, 1 I i I m - n + 1. 

The occurrence of a match is obviously equivalent to 
a = a(i). For  integers b, c let  res (D, c) denote the residue of 
b when  divided  by c. Note that if 0 I r,, r2 < p ,  
then res (r ,  + r,, p )  = r,  + r, if r,  + r2 p ,  and res (r ,  + r,, p )  
= r, + r, - p otherwise. 

Let p be a random_ly chosen prime in the range [ 1, nm2]. 
Denote res ( b ,   p )  = b, and let up denote the operation 
u mod p for u = +, -, . . The algorithm starts by computing 

a = ( x ,  ', 2 +, x,) ', 2 +, x,  . . . 
and a(l). The computation is done in real time with a fixed 
number of computer operations per bit of X and bit of Y as 
they are read in (two adds, two comparisons, and  up to two 
subtractions per bit). 

At the ith step, 1 I i I m - n, we  have ci and a(i). If a # 
a(& compute a(i + 1) by 

a(i + 1) = (a(i) -, 2"" ., yi)  ., 2 +, y,+,, 

and test whether ci = a(i + 1). 

- 
" 

- 
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If,  for some i, d = a(i), then test  whether X = Y(i) using 
bit-by-bit comparison. If a match is found, stop. Otherwise 
choose a new random p < nm2 and reinitialize the search at 
place i + 1 in the text. 

It  is shown that for every X and Y, this randomized 
algorithm runs in expected time m + c. It is  "nearly  real- 
time." Another version,  employing simultaneously several 
randomly chosen  primes, runs in real time. - 

We require auxiliary  storage to keep p ,  2, ri(i), 2"-', i ,  
where i is the pointer to the current place in Y.  

We want to apply this basic  idea to several pattern- 
matching problems and use a variety of fingerprint 
functions. It is  therefore  useful to develop a general 
framework into which the above and all the other algorithms 
will  fit as special  cases. This is done in the next  section. 

2. The  general  string-matching  algorithm 
In this section we establish a general  framework that can be 
specialized to yield  several particular string-matching 
problems and algorithms. An instance of the general string- 
matching problem is  specified  by 

Positive  integers n and t. 
An index  set R of cardinality t. 

0 For each r E R, strings X(r) and Y(r) in (0, 1)". 

The  problem is to decide  whether there exists an index 7 
such that X(r) = Y(r) and, if so, to find one such index. 

Particular string-matching problems  lead to particular 
choices of R and particular rules  for determining X(r) and 
Y(r) from the input data and the index r. We indicate two 
examples. 

The linear pattern-matching  problem 
This  is the familiar  problem treated in Section 1: Given two 
strings, a pattern X and a text Y, determine whether X occurs 
as a consecutive  block within Y.  Suppose X = xIx2 . . . x,  
and Y = y ,  y2 . . . y,,,, where  each x, and each yj is a 0 or a I ,  
a n d m r n . W e t a k e t = m - n + l , R = ( 1 , 2 , . . . ,  
m - n + 11, X(r) = X for  all r, and Y(r) = y,y,, . . . y,+"-,. 

Two-dimensional  array matching 
This is the problem of determining whether a two- 
dimensional array of Os and 1s occurs as a block  within a 
larger array. For notational convenience we take the arrays 
to be square. Let X = (x,) be an s X s array of Os and Is, 
and let Y = ( y,,) be a m X m array of Os and 1 s, where 
m 2 s. The problem  is to determine whether there is 
a pair ( k ,  I )  with s 5 k c m and s c I I m such that 

- yk-, ,,-, for all i and j such that 0 I i I s - 1 and 
0 I j I s -1. In other words, we are looking for an s X s 

- 
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subsquare of the text that exactly matches the pattern. To fit 
this problem within the general  framework, we  may take 
n = s ’ , t = ( m - s +  I f , a n d R = ( ( k , l )   I s s k s r n a n d  
s s Is m ) .  The string X( (k, I)) is obtained by concatenating 
together the rows  of X,  and Y( ( k, I)) is obtained by 
concatenating together the rows  of the s X s block  within Y 
having its lower right-hand comer in the (k, I) position. 

A simple,  straightforward method of solving a string- 
matching problem is to impose a total ordering on the index 
set R,  and then march through R, testing,  for  each  index r, 
whether X (  r )  = Y( r).  This is the method actually used in 
many text-processing  systems, and there are many situations 
in which  it  is the method of choice.  If n, the length of the 
strings  being compared, is  very  small, then the time to 
compare two strings is  small, and the method is quite 
effective.  If one can assume that the strings being compared 
are random strings of Os and Is, then it takes  only  two  bit 
comparisons, on the average, to establish that X(  r )  # Y( r), 
and so the method is  again  highly  effective.  But  when n is 
large and we are unwilling to make any assumptions about 
the input data, the straightforward method may be 
unacceptable,  since nt bit comparisons are required in the 
worst  case. 

We present a general approach to string matching which 
may sometimes have  advantages  over both the 
straightforward method mentioned above and some of the 
more sophisticated and theoretically  efficient methods that 
have  been  proposed.  Let S be a finite  set and, for  each p E S, 
let bP( .) be a function from (0, 1 )” into a range 0,. The 
value bp(X) can be viewed as a “fingerprint” of the string X .  
The algorithm will compute one or more fingerprints of each 
string, and will compare X(  r )  with Y( r )  only if the 
corresponding fingerprints  of the two  strings  agree. The 
fingerprints thus serve as a preliminary filter  which  is  highly 
likely to establish that X( r )  # Y( r), if indeed  these  two 
strings are unequal. Since the fingerprints are much shorter 
than  the original  strings, this screening  process  is  likely to be 
advantageous. 

matching problems is not new. Many  such techniques based 
on check sums and hash functions can be found in the 
literature. What is new  is the particular way  of choosing the 
fingerprinting functions at random at run time. This 
randomization technique permits us to establish  very strong 
properties of our algorithms, even if the input data are 
chosen by an intelligent  adversary  who  knows the nature of 
the algorithm. 

We  give three different randomizing algorithms based on 
the fingerprinting technique. For brevity,  let up( r )  and b,(r) 
denote bp(X( r) )  and bp( Y(r)), respectively.  Assume that the 
index  set R is  totally  ordered.  Let CY be the first element of R 
and let w be an “end marker” that follows the last element 
of R.  Finally, for r E R, let r’ denote the successor  of r in 
R U ( w ) .  

The idea of using  fingerprinting techniques for string- 
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Algorithm 1 

var match:boolean; r:member of R;  k:positive  integer; 
begin 

for i := 1 to k do pi := randomly chosen element of 
s; 
match := false; r := a; 
while match = false and r # w do 

begin 
ifu,(r) = b&r) for i = 1, 2, . e ,  k 
then match := true; 
r := r’ 
end 

end 

Algorithm 2 

var match:boolean; r:member of R; 
begin 

p := randomly chosen element of S; 
match := false; r := CY; 
while match = false and r # w do 

begin 
if uJr) = bJr) 
then if X(  r )  = Y( r )  then match := true; 
r := r’ 
end 

end 

Algorithm 3 

var match:boolean; r:member of R; 
begin 

p := randomly chosen element of S; 
match := false; r := a; 
while match = false and r # w do 

begin 
if u,(r) = bp(r) 
then if X(  r )  = Y(r)  

then match := true; 
else p := randomly chosen element of S 
r := r‘ 

end 
end 

In comparing these  algorithms, the concept of afulse 
match is  essential. A false match is  said to occur in 
Algorithm 1 if, for some r such that X (  r )  # Y( r), the 
algorithm determines that uJr) = bJr) for all i = I ,  2, + . , 
k. Similarly, in Algorithms 2 and 3, a false match occurs if, 
for some r, the algorithm determines that u,(r) = bp(r) 
but X(  r )  # Y( r). 

string X(  r )  or Y(r). As soon as the fingerprinting functions 
indicate a match, the algorithm reports that a match has 
occurred and halts.  Algorithms 2 and 3 compute only one 

Algorithm 1 computes k fingerprinting functions for each 
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fingerprinting function. If the fingerprinting function 
indicates that X (  r )  and Y( r )  may  be equal, these algorithms 
then test  whether X (  r )  and Y(  r) are actually equal and, if 
not, continue scanning the input. Algorithm 3 has the 
additional feature that a new fingerprinting function is 
selected  whenever a false match occurs. 

Algorithm 1 never  backs up over the data. Thus, it is the 
method of choice for a hardware implementation, or in any 
situation where the input data are streaming past an input 
terminal in an on-line fashion. Under reasonable 
assumptions it is a real-time algorithm (i.e., it dwells for a 
constant number of steps or each bit of its input), and it 
lends itself to parallel computation since the k fingerprinting 
functions can be computed independently. In this algorithm 
a false match, if it occurs, will go undetected, and thus the 
algorithm may  erroneously report a match. However, 
because of the randomization in the choice of the 
fingerprinting functions, the probability of such an error can 
be  reduced to a truly negligible  level;  moreover, this will be 
true uniformly, regardless  of  how the input data are chosen. 

Algorithms 2 and 3 always  give a correct result and, in the 
absence of a match or false match, they  also run in real time. 
The time required to verify matches and to detect and 
recover  from  false matches also contributes to their running 
time. Since  each of these algorithms makes a random choice 
of fingerprinting functions, the running time of each is a 
random variable  even  for a fixed input. We  show that, 
uniformly for all inputs, each of these algorithms can be 
made to run in linear expected time. Moreover, we  show 
that the probability of a catastrophe, in the form of an 
exceptionally long series  of  false  matches,  is  negligible. 
Algorithm 3, which  hedges  against catastrophe by changing 
the fingerprinting function whenever a false match occurs,  is 
especially  safe in this respect. The advantages of such 
hedging are demonstrated in Section 5. 

classes  of string-matching problems, the following three 
properties can  be  achieved simultaneously: 

In support of the above claims, we  show that, for certain 

1. For all p E S, log, I 0, I << n, where n is the common 
length of the strings X(r) and Y(r), and 0, is the range  of 
values of 4,; i.e., the fingerprints of the strings in question 
can be represented much more compactly than  the strings 
themselves. 

2. For every particular problem instance, there is  only a 

3. It  is  easy to compute a,(r') from a,(r) and b,(r') from 
small probability that a false match will occur. 

b,(r); i.e.,  fingerprints are easy to update. 

All three properties depend on the choice of a family of 
fingerprinting functions. Property 3 also depends on specific 
details of the string-matching problem  being  considered and 
on the total ordering of the index set R. 252 
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3. A family  of  modular  fingerprint  functions 
A binary string X = x,x2 . . . x, can be  regarded as a binary 
representation of the integer 

n 

H ( X )  = 2 ~~2'"'. 
i= I 

For any  integer p ,  the function H,(X) = H ( X )  mod p is a 
possible  fingerprint function. Let M be a positive  integer to 
be  specified later. Define S = { p  I p is prime and p 5 M ) ,  
and @,(X) = H,(X) for  all X .  

A random prime in the range [ 1, MI can be  selected  by 
repeatedly choosing random integers in that range,  testing 
each for primality, and halting when a prime is found. The 
expected number of trials is approximately In M. The time 
to perform  each primality test  is O((1og M)') if  we use the 
probabilistic algorithms of Rabin [9] or Solovay and Strassen 
[ 101. It is possible  for  these algorithms to incorrectly  identify 
a composite number as prime, but the probability of such an 
error can be reduced to a completely  negligible  level. The 
effects  of such a rare mishap are insignificant if  we  use 
Algorithm 3, which  discards p as soon as a false match 
0cCUl.S. 

To study the properties of the family { H,) of fingerprint 
functions based on primes, we require some number- 
theoretic definitions and lemmas.  Let *( u )  denote the 
number of primes CU. 

Lemma I 
If u z 29, then the product of the primes cu is >2" 

Proof Theorem 18 of [ 1 11 states that the product of the 
primes su is  >exp (u  - 2.05282~"~). This inequality 
established the result for u 2 49, and the result  can  be 
verified  by direct computation for 29 5 u < 49. 0 

Corollary I 
If u z 29 and a c 2", then a has fewer than ~ ( u )  different 
prime divisors. 

Proof Suppose a has more than x( u )  prime divisors, and 
let  these be q1 + . . q,. We obtain the contradiction 

2" 2 a 2 qlq2 . . . q, 2 the product of the first r primes 2 the 
product of the first T( u )  primes = the product of the primes 
less than or equal to u > 2". 

Lemma 2 (Rosser and  Schoenfeld [ I  I]) 
For all u z 17, 

- 5 T(U) 5 1.25506 - U U 
In u In u '  

Theorem 3 
If Algorithm 2 or Algorithm 3 is  executed  with 
S = ( p  I p 5 M and p prime), then, for  every instance 
{ ( X (  r), Y( r ) ) ,  r E R), the probability that a false match 
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occurs is 

=?r(M)' *(nt) provided  nt L 29. 

Proof For a fixed input { ( X (  r) ,   Y(  r)) ,  r E R ] and any 
prime p ,  occurrence of a false match when  Algorithm 2 or 
Algorithm 3 is  executed  with 4, as the initially  chosen 
fingerprint function is equivalent to each of the following 
statements: 

For each r, I H(X(r ) )  - H( Y(r ) )  I C 2". Hence 

n IH(X(r)) - H(Y(r)) l  c 2"'. 
IrlX(r)+Y(Ol 

By Corollary 1, the product has at most r( nt) prime divisors. 
Thus p is  chosen at random from T ( M )  primes, of  which at 
most r(nt) lead to a false match. It follows that, for a 
random choice of p ,  the probability of a false match is at 
most  (*(nt))/(*(M)). 0 

Theorem 4 
If Algorithm 1 is  executed  with S = ( p  I p 5 M and p prime) 
and 4, = H,, then, for  every instance { ( X ( r ) ,   Y ( r ) ) ,  r E R 1, 
the probability that a false match occurs  is 

5 (zr provided nt L 29 

and 

st ($)* provided n 2 29. 

Proof A false match occurs  only if each of the initially 
chosen primes pI, p2, . . ., pk divides I H(X(r ) )  - H(Y(r ) )  I 
for some r such that X( r )  # Y(  r). This implies that each of 
these primes divides 

n I H(X(r))  - H( Y(r))  I. 
I r lX( rYY(r ) l  

Since this product is <2"', the number of primes that divide 
it  is sr(nt) ,  provided nt L 29.  Hence, the probability that pI 
divides this product is 

and since the pi are drawn independently at random from 
the primes dividing M, the probability that all k of the pi 
divide this product is 

5 ($-$ 
This proves the first inequality. 

Since I H(X(  r))  - H( Y(  r))  I c 2", the number of primes 
dividing 1 H(X(  r))  - H( Y(   r ) )  I is ST( n), provided X(  r )  # 
Y(r )  and n L 29.  Hence, the probability that the randomly 
chosen primes p, ,  p2,  . . . , pk all divide I H(X( r))  - H( Y(  r)) I 
is 

5 (g)): 
and the probability that this occurs for some r E R is 

This proves the second inequality. 0 

Corollary  4(a) 
If  Algorithm 2 or Algorithm 3 is  executed  with S equal to 
the set of primes sn t2  and 4, = H,, then, for every instance 
of the input  data n, t ,  { ( X ( r ) ,   Y ( r ) ) ,  r E R )  such that 
nt L 29, the probability that a false match occurs is 
52.51 l/t. 

Proof Apply Lemma 2 to bound a(nt) from above and 
r(nt2) from below. 

Corollary 4(b) 
If  Algorithm 1 is  executed  with S equal to the set of primes 
snt2, then, for  every instance of the input  data n,  t, 
( ( X ( r ) ,   Y ( r ) ) ,  r E R )  such that n L 29 and for  every  choice 
of the parameter k, the probability that a false match occurs 
is 5 (1 .255)kt"2k-1'( 1 + 0.6 In t)k. 

Proof The probability of a false match is bounded above 
by 

Apply Lemma 2 and the inequality n z 29 to bound r(n) 
from above and r(nt2) from below. 0 

Corollaries  4(a) and 4(b)  establish that it is  possible to 
achieve  concise fingerprints that ensure a low probability of 
a false match. For example, suppose  Algorithm 2 is run on 
an instance where n = 250, t = 4000, and M = nt2 = 
4 X lo9. Then, for any p 5 M, the range  of the fingerprinting 
function H, is (0, 1, . . . , p - 11, where p 5 4 X lo9 < 232. 
Hence each string of length 250 can be  represented by a 
32-bit fingerprint, and yet the probability that a false match 
occurs will  be  less than lo". If Algorithm 1 with k = 4 is 
run on the same instance with the same set of fingerprinting 
functions, the probability of a false match is  less than 
2 x 

4. Efficient  updating  for  one-dimensional  and 
higher-dimensional  problems 
In this section we investigate the storage requirements and 
execution times of our algorithms when the family (H,) of 
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fingerprint functions is  used,  where p is drawn from the set 
of primes cnt'. 

We assume that it requires constant time to fetch, store, 
compare, add, or subtract fingerprints. This is  reasonable 
because a fingerprint  is an integer in the range [0, nt2 - 11, 
so that the number of bits  needed to represent a fingerprint 
is  Tlog, d l .  This is of the same order of magnitude as the 
length of a pointer into the input data. In typical 
applications of  our methods, the length of a fingerprint  does 
not exceed the length of a register in the computer being 
used.  Moreover, in the case of linear pattern matching or 
higher-dimensional array matching, the pattern of  access to 
fingerprints is predetermined and regular, so that it is 
normally  possible to fetch  fingerprints from high-speed 
registers rather than from memory. 

of the algorithms are dominated by the updating operation, 
in which a,( r ' )  is computed from a,( r )  and b,(r') is 
computed from b,(r). We  show that, in the case  of linear 
pattern matching or higherdimensional m a y  matching, the 
time for each update is bounded by a constant. It follows 
that, in these  cases,  Algorithm 1 is a real-time  algorithm. By 
this we mean that the algorithm makes a single  pass through 
its input data, dwelling  for a constant time on each  bit, and 
then halts. Here we are assuming that the random primes 
pI, p2, . . , pk are chosen in a preprocessing step, before the 
input data arrive; this is  valid  only if the parameters n and t 
(or upper bounds on these parameters) are available in 
advance.  Algorithms 2 and 3, which  check for false  matches, 
run in time O(n + t )  in the event that no false match occurs. 
We later investigate the probability distribution of the 
execution time of each of these algorithms, taking into 
account the effect  of  false matches. 

Since  false matches are quite unlikely, the execution times 

The linear pattern-matching  problem 
Let us recall  how this problem, already treated briefly in 
Sections 1 and 2,  fits into  the general  framework. We are 
given a pattern X E (0, 1)" and a text Y E  (0, 1 I"', and wish 
to determine whether X occurs as a consecutive  block  within 
Y . H e r e t = m - n +  l , R = ( l , 2 ,  ..., m " n +  11, 
X ( r )  = X = xIx2  . x,, Y(r)  = y,y,+, . . . Y,+,,-~, LY = 1, and 
r ' =  r +  1. 

We assume that the input is a string consisting of the 
pattern X followed  by the text Y. As the input is scanned 
from  left to right, the fingerprint of the pattern and the 
fingerprints of the blocks within the text are computed with 
a constant number of operations per bit of input. 

Recall that H (  Y(r) )  denotes the integer  represented by the 
string Y(r). Then H( Y(r  + 1)) = (H(Y(r))  - 2""y,) . 2 + 
y,, . This gives the following formula for updating the 
fingerprint of a block of the text: 

where = -2" mod p. To initialize this computation, 254 
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one pretends that the text  is  preceded by a string 
y-(,,-,)y-(n-,) . . . yo of n zeros.  With this convention, we  have 

b,(-n) = 0 

and 

b,(r + 1) = (b,(r) + b,(r) + SY, + Y,") mod P, 

where r ranges  from -n to m - n, and y, = 0 for j c 0. 
The fingerprint of the text X is computed in a similar 
manner: 

a,(-n) = 0 

and 

a,(r + 1) = (a,(r) + a,(r) + Sx, + x,,,) mod P, 

where r ranges from -n to 0, and xi = 0 for j < 0. The 
fingerprint of X is a, (1). 

N o t e t h a t , i f O s r , s p - l a n d O = r , = p -  1,then 
rl + r, mod p is either rl + r, or rl + r, - p. It follows that 
updating can be performed  with a constant number of 
operations. On a typical  single-address computer, four 
fetches, three adds, three comparisons, two subtractions, and 
one store are sufficient for updating.  Moreover,  since the 
pattern of  access to data is so simple and regular,  it  is 
possible to keep the constants [ and p,  the fingerprint of the 
pattern and the most  recently computed fingerprint of a 
block  of text, in fast  registers, and to fetch  bits  from the 
pattern and text from memory into fast  registers  before  they 
are needed, so that all operations take their operands from 
fast  registers. 

The storage requirements of Algorithms 1,2, and 3 are 
modest.  Algorithms 2 and 3 require six  registers  for data (to 
store the constants and p,  the fingerprint of the pattern, the 
most  recently computed fingerprint of a block of text, and 
the two  bits of input data needed  for the current updating 
step) and two  address  registers  which contain pointers into 
the input. Algorithm 1, which uses k fingerprinting functions 
at once, requires 4k + 2 registers  for data  and two  address 
registers. 

Theorem 5 
Algorithm 1 is a real-time algorithm. For every input 
consisting of a pattern of length n and a text of length m, the 
expected running time of Algorithm 2 or Algorithm 3 is 
O(n + m). 

Proof The proof that Algorithm 1 is real-time is  given 
above.  Algorithms 2 and 3 require O(n + m) time for 
reading the input data and performing updating operations, 
O(n) time to verify a match if one occurs, and O(n) time to 
detect  each  false match that occurs. The probability of a false 
match is at most 2.5 1 l/(m - n + I), and the maximum 
number of  false matches possible  is m - n + 1, so the 
expected time spent in detecting false matches is bounded 
above by 
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- n + l ) =  

Thus the expected running time is O(m + n). 
In  Section 5 we make a further analysis of the probability 

distribution of the execution time of Algorithm 3, showing 
that Algorithm 3 rarely  experiences a large deviation above 
the expected execution time. 

Two-dimensional array matching 
In this subsection we sketch  how  Algorithms 1,2, and 3 can 
be tailored to the two-dimensional array-matching problem 
introduced in Section 2. To do so, we impose a linear 
ordering on the index  set R, and then show that fingerprints 
can be updated rapidly as the algorithm marches through 
this linear order. 

R e c a l l t h a t R = ( ( k , I ) I s s k s m a n d s s I s m ) . W e  
order R so that its first element is (s,  s), its last element is 
(m,  m), and  the successor  of (k, I) is  given  by 

(k ,  I)' = if k < m then ( k  + 1, I) 
e lse( i f I<mthen(s , l+  1)). 

Geometrically, the algorithm starts with the s X s block in 
the upper left-hand comer of the text, marches down until it 
reaches the last  row,  moves to the highest  position one 
column to the right,  marches down, etc. 

Recall that, for any string X ,  H(X) denotes the integer 
having X as its binary representation, and HJX) = 
H(X)modp.Fork= 1,2, ..., m a n d I = s , s +  1, ..., m, 
let wk, be the string yk,l-s+lyk,l-s+2 . . . ykl of length s. For 
k = s , s +  1, + . . , m a n d I = s , s +  1, ..., m,letz,,bethe 
string W~-~+~,,W,-~+~,, . w,, of length s2. Then z, is the bit 
pattern obtained by concatenating together the rows  of the 
s X s block  of a m y  Y having position k, I in its lower  right- 
hand corner. 

Let 

cp((k,  0 )  = ff,CWk/) 

and 

bp( ( k, I) ) = Hp(zk/). 

Then cp( ( k ,  I)) is the fingerprint of the string of s bits in row 
k having  rightmost  position  k, I, and bp( (k, I)) is the 
fingerprint of the s X s block  of Y with  position k, I in its 
lower right-hand comer. The following update formulas are 
easily  derived: 

cp(( k9 I)) = (2cp(( k? - + tyk,/-s + YkJ) mod P, (2) 

bp((k + 1, 1)) = ((bp((k, 1) )  + 6 c,,((k - s + 1, 0 ) ) X  

+ cp((k + 1, 1))) mod P, (3) 

where t = -2" mod p, X = 2s mod p, and 6 = -2'"-') mod p. 
The right-hand side of (2) can be evaluated in constant time, 

and the right-hand side of (3) can be evaluated in constant 
time if  we assume that multiplication mod p can be 
performed in constant time. This would be true, for 
example, if a hardware multiply/divide unit were  available 
that delivered the remainder in the case of integer  division. 

Given  these update formulas it is  easy to work out the 
details of initialization and storage allocation for Algorithms 
1, 2, and 3. Each  of  these algorithms requires O(m) storage 
locations, and, in the absence of  false  matches, runs in time 
O(m*), since the entire computation is camed out in a single 
pass through X followed  by a single  pass through Y, with 
constant execution time per position. 

A simple  trick  reduces the storage requirements from 
O(m)  to O(s), at the cost of increasing the execution time by 
a constant factor. The idea  is to cover the m X m text array 
with  small  subarrays,  with the property that every s x s 
block in the text occurs as a block in one of the subarrays. 
The original algorithm can then be applied independently to 
each  subarray. The reader will  easily  verify that, for each 
w z s, there exists a covering  with 

1 + 0 (:) m2 
W 

subarrays,  each of  which  is (w + s - I )  X (w + s - 1). The 
running time then becomes 

and the storage requirement is O( w + s - 1). Choosing 
w = O(s) gives time O(m2) and storage O(s). 

The algorithms generalize immediately to ddimensional 
arrays, requiring O(m"')  storage to process a 
m X m X . . X m = md array. With the subarray-covering 
trick, the storage can be reduced to O(sd"), with  expected 
running time o(md). 

Bird [7] has  given an extension of the KMP algorithm to 
two-dimensional array matching, and his approach can also 
be applied to d-dimensional array matching. His method 
requires a fairly  complex preliminary phase, in which the 
pattern is  processed to give arrays of length O(sd) whose 
elements are pointers. Thus, our randomizing algorithm is 
simpler and equally  fast and, in the version  based on 
subarray  covering, uses less  storage. 

5. The  advantages of reinitializing 
In this section we explore the properties of Algorithm 3, the 
version  of the fingerprinting method which  discards its 
current fingerprint function whenever a false match occurs. 
We  show that this algorithm has two important advantages, 
which in some environments outweigh the overhead of 
reinitializing the fingerprint function after a false  match: 

1. Reinitializing  is a hedge  against catastrophe. It reduces to 
a completely  negligible  level the probability that a long 
series  of  false matches will occur. 255 
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2. The performance of the method remains good  when 
fingerprinting is  based on arbitrary moduli rather than 
primes. 

Hedging  against  catastrophe 
Suppose we are presented  with an instance of the linear 
pattern-matching problem in which the pattern X is the 
binary  representation  of  a  multiple  of the prime p, and 
Y = 0'". Then if  Algorithm 1 or Algorithm  2  is  executed  with 
H, as its fingerprint function, a false match occurs in each  of 
the m - n + 1 possible  positions  where X is  tested  for an 
occurrence  within Y. The following  theorem  shows that 
choosing  Algorithm 3 renders the possibility  of  such  a 
catastrophe remote  regardless  of  how X and Y are chosen. 

Theorem 6 
Suppose  Algorithm 3 is  applied to an instance of the general 
string-matching  problem  specified by ( ( X (  r), Y(  r)), r E R ) ,  
where 1 R 1 = t and each  string X( r) or Y( r )  is  of length n. 
If S is the set  of primes less than or equal to M = nt' and 
4, = H,, then the probability that k or more false matches 
occur  is ~ ( 2 . 5  1 I/$. 

Proof By Corollary  4(a),  each time a new prime p E S is 
randomly  chosen, the probability of a false match  is at most 
2.51 llt .  0 

Fingerprinting  using arbitrary moduli 
We consider the behavior  of  Algorithm 3 when the 
fingerprinting  process  is  based on arbitrary moduli, rather 
than primes;  i.e.,  we take S = ( 1,  2, . . ., M ) ,  with 4, = H,. 

We require  two  number-theoretic  lemmas. 

Lemma 7 [1 I ]  
There is a constant B such that, for  all  positive  integers x, 

P=X 

Let M be a  positive  integer.  Call an integer x MTfat if 1 s 
x 5 M and x has  a prime divisor p > &. Let F(M) denote 
the number of M-fat  integers. 

Lemma 8 
For M 5 9000, F(M) B Ml2. 

Proof For any prime p the number of  positive integers  less 
than or equal to M and divisible  by p equals LMIpJ. If 
x 5 M is M-fat, then exactly one prime p > divides x. 
Thus 

F ( M ) =  [ $ ] z M  E -j-r(M). 1 
JGCpShf JG" 

Applying  Lemma  2 and Lemma 1 1, 

P prime P prime 

1.25506M 
In M 

- 

Now 

M 2 9000 + In M 2 9.1 - F(M) 

9 1.25506) , $ 
B M 0.693 - - - - ( 2.(9.1)'  9.1 

We  now estimate the probability of a false  match  when 
randomly  chosen  M-fat numbers are used  for  fingerprinting. 

Lemma 9 
Consider an instance  of the general pattern-matching 
problem in which t = n. If  we  use  Algorithm 3 with 
S = ( p  I p is M-fat), where 

and @,( Y) = H( Y) mod p, then the probability of a  false 
match is 5112. 

Proof The proof  proceeds  along the lines of Theorem 3 
and Corollary  4(a).  In this case I R I = n and a  false  match 
occurs  only if the M-fat integer p divides 

P = n I H(X(r)) - H( Y(r))I s 2"'. 

Let L be the number of "fat integers x that divide P. For 
each  such x there is  a  prime q > &l that divides x, and each 
such  prime  occurs  in at most & different  divisors of P. 
Thus P has at least L/& distinct prime divisors > &, so 

X(rkCYV) 

5 P 5 2"'. Passing to logarithms, 

n2 & 
L S -  

log2&' 

Since the number of M-fat  integers  is  >(M/2), the 
probability that a  randomly  chosen  M-fat  integer trigers a 
false match is 

L 2n2 5 - <  
MI2 - Jz log2&' 

For the indicated  choice of M, 

2n2 e-. 0 
1 

&log2& 2 

Corollary 9 
Suppose  Algorithm 3 is  applied to  an instance of the general 
string-matching  problem specified  by { (X(r )  < Y(r)),  r E R ) ,  
where I R I = t and each string X(r) or Y(r) is  of length n. 
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Assume that fingerprints can  be updated in constant time, as 
in the case  of linear pattern matching or two-dimensional 
array matching. If S is the set of positive  integers I M ,  where 

M = m a x  - 
((In n f '  ) 6.25n4 

9ooo , 

then the expected running time is O(n + t ) .  

Proof Apart from detecting  false matches and restarting 
the fingerprinting  process after a false match, the running 
time is O ( n  + t) .  The time overhead associated  with 
detecting a false match and resuming the computation is 
O(n) .  With probability >1/2, the p chosen  after a false 
match is  M-fat. I fp  is M-fat, then, with  probability >1/2, the 
computation will advance through at least n indices r E R 
before the next  false match occurs.  Hence, the expected 
number of false matches is O(t /n ) ,  and the expected time 
spent in dealing  with  false matches is O(t). 0 

6. A second  family  of  fingerprint  functions 
In this section we present another interesting family { K, ) of 
fingerprint functions. For each  positive  integer, p ,  K, is a 
homomorphism from (0, I )* into the group of 2 X 2 
unimodular matrices with entries in 2,. the ring of integer 
residues mod p .  

Let X denote the null string.  Define a homomorphism K 
from (0, I )* into 2 X 2 nonnegative  integer unimodular 
matrices by 

and 

where * denotes concatenation of strings and . denotes 
matrix multiplication. For any positive  integer p ,  the 
function K, is  defined in the same way,  except that all matrix 
elements are regarded as elements of 2, rather than as 
integers. 

The function K has the following  easily  provable 
properties: 

1 .  K is a monomorphism; i.e., K ( X )  = K( Y) X = Y. 
2. If X E (0, I In ,  then each element of K ( X )  is  less 

than or equal to F,,, the nth Fibonacci number 
(F,, = F, = I ,  F, = Fn-l + Fn-2, n 2 2). 

In comparison with the family (H,)  of fingerprint 
functions, the family { K,) has the disadvantage that each 
fingerprint  consists of four integers mod p ,  rather than one. 
We  show that the two  families are about equally  effective in 
avoiding false  matches, and that the use of ( K, ) leads to 
remarkably simple updating methods. 
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Theorem 10 
If Algorithm I is executed  with S = ( p  1 p I M and p is 
prime) and 6, = K,, then, for  every instance { ( X (  r) ,   Y(r)) ,  
r E R), the probability that a false match occurs is 

where t = I RI. 

Proof The proof  is similar to the proof of Theorem 4.  If a 
false match occurs, then, for some r E R and some 1 5 i, 
j s  2, 

K ( X W ) , j  + K(  YW)&, > 

but 

Kp(X(r))i,j = K,( Y(r))i,j * 

It  follows that p divides the product of  all the nonzero 
terms of the form I K(X(r)i , j  - K(Y(r)) j , j l ,  r E R, i E ( 1 ,  21, 
j E ( 1 , 2 ) .  This product is bounded above by F:, which in 
turn is 12r41 log2  F.1 . By Corollary I ,  the number of primes 

which  divide this product is sx ( r4 t  log, F,,l). The result now 
follows,  since p is  chosen at random from a set  of *(M) 
primes. 0 

Corollary IO 
If Algorithm 1 is executed  with S = { p  I p 5 nt2 and p 
prime) and 6, = K,, then, for every instance of the input 
data { ( X (  r), Y( r ) ) ,  r E R 1, the probability that a false match 
occurs is 56.97l l t .  

Proof Apply Theorem 10, Lemma 2, and the fact that 
log, F, - 0.694n. 0 

We next demonstrate that, when  Algorithm 1 is  used  with 
6, = K,, elegant updating methods result. For example, in 
the string-matching problem, the counterpart of Equation ( I )  
is 

a,@ + 1) = A,(~,)-'ap(r)Ap(Yp,,). 

Here  all matrices are over Z,, 

and 

and similarly for the two-dimensional array-matching 
problem, using appropriate counterparts to Equations (2) 
and (3). 

7. Fingerprinting  techniques  for  irregular  shapes 
In this section we demonstrate that randomized algorithms 
based on fingerprinting techniques can  be applied not only 257 

RICHARD M. KARP AND MICHAEL 0. RABIN 



A shape S. As in arrays, the x coordinate  designates  rows and the J 

coordinate  columns. 

1 A pattern X of shape S. 

to the matching of strings and arrays, but also to matching 
problems involving patterns of irregular  shape.  Let Z denote 
the set of integers.  Define a shape S as a finite  subset of 
Z X Z which includes (0,O). The size of S is by definition 
I SI = n. A pattern of shape S is a function X :  S + (0, 1 ). 
See Figures 1 and 2. 

m X m array of Os and 1s; more precisely, Y is a function 
Let S be a shape, and X a pattern of shape S. Let Y be an 

258 from { 1,2, . . , m J 2  into (0, 1 ) .  Define S + (a, b) = 
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{(x + a, y + b)  I (x, y )  E S ) .  We say that X occurs in Y at 
(a, b)  if 

S + ( a ,  b ) G  {1 ,2 ,  ..., m )  X { I ,  2, ..., m )  

and 

for  all (x, y )  E S, "(x, y )  = Y(x + a, y + b). 

The pattern-matching problem in this case  is the following. 
Given a two-dimensional array Y and a pattern X of shape 
S, does X occur in Y? 

The straightforward algorithm requires,  for an m X m 
array and for  shapes of  size n, about m2n steps. Our general 
fingerprinting method in many cases  reduces the number of 
steps to m2 J i  + n. 

Define a horizontal segment as a subset of N X N of the 
f o r m { k l x ( y E N I I ~ y s r J .  

Given a shape S, we can decompose  it into maximal 
horizontal segments and arrange these in some definite order 
I , ,  . . . , I,. Our method is  efficient,  as compared with the 
straightforward method, whenever the number of segments 
satisfies c << I SI = n. For example,  for  shapes S which are 
circles, or ring-shaped  with the interior radius half  of the 
exterior  radius, or equilateral triangles, we have c = O( &). 

Assume that we want to solve the pattern-matching 
problem for a two-dimensional m X m array and a pattern X 
of a favorable  shape S of  size n. In order to cast this problem 
into the general  framework of Algorithm 1, decompose S 
into a disjoint union I ,  U . . . U IC of horizontal segments 
whereI,= {k,) X { $ s y ~ r , J ,  1 s j s c . L e t m i n ( x ) =  
mink,, max(x) = maxk,, min(y) = minl,,  max(y) = maxr,. 
Note that since (0,O) E S, we  have min(x),  min(y) I 0. 
Define 

R = ((a, b)  1 1 - min(x) I a s m - max(x), 

1 - min(y) s b I m - max(y)J 

a n d l R l   = t . T h u s S + ( a , b ) C { l ,  . . . , m J Z  iff ( a ,b )ER.  
We  have t s m2. Unravel X into a string by defining 

X ( 4 )  = X(k,, r,)  X(k,, 4 + 1)  . . . X(k,, rj) 

1 = "(I , )  X(&)  . . . X(Zc) E (0, 1 Y .  

and 

Similarly, the 0-1 pattern formed in the array Y by the shape 
S + (a, b)  is  unraveled into a string y(a, b), (a, b) E R. Thus 
we have the string-matching problem {(x, F(a, b)) ,  
(a, b )  E RJ, and the solution of this problem will  tell us 
whether the pattern X occurs in the two-dimensional array 
Y. 

Section 6. Choose a random prime p s nt2 5 nm4. Then 
It  is most convenient to use the fingerprint functions K, of 

c 5  

j - l  y==$ 
K,(x) = n n K,("(k,, Y)). 

Thus, calculating K,(x) requires n - 1 multiplications of 
2 X 2 matrices in 2,. 

IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987 



We want to calculate the K,( F(a, 6))  by  2c - 1 operations 
per  fingerprint. To this end, preprocess Y as follows. 
Associate  with  each  position (k ,  /), where 1 5 k,  m, the 
cumulative product of matrices corresponding to the lowest / 
bits in the kth row  of Y, Le., the matrix 

f ( k ,  4 = Ii Kp(Y(k  A ) .  

These matrices can be computed at  the cost of m(m - 1) 
multiplications of 2 X 2 matrices over 2,. The matrices 
f ( k ,  I )  are stored in an appropriate array. Note that each 
f ( k ,  /) is a unimodular matrix, and for such a matrix 

J= I 

Since matrix multiplication is associative, it follows  from 
the parallel-prefix computation theorem that all the products 
(4) can be computed in parallel in time @log m), using m 
processors.  Similarly, K,(X) can be computed in time 
O(1og n ) ,  using n processors. Denoting, as in Section  2, 
Y( r )  = yr+, . . . Y,+,,-~, 1 I r I m - n + 1, the fingerprints 

K,(Y(r)) = K,(P(Y, r - l))".Kp(P(Y, r + n - 1)) 

can be computed in parallel,  using m processors, in constant 
time. Finally, the comparisons K,(X) = K,( Y(r))  can  be 
done in parallel, using m - n + 1 processors, in constant 
time. Using  Corollary 10, but choosing the prime in the 
range [ 1, nmk], we  get the following. 

With thef(k, /) available, we can  calculate K,( y(a, b)) for 
(a, b)  E R by  2c - 1 matrix multiplications, 

K,( P(a, b)) = II f"(kJ + a, 5 + b) f (k j  + a, rj + b). 
C 

J= I 

Summing up our results, we  have the following  direct 
corollary of Theorem 10 and Corollary 10. 

Theorem 12 
The string-matching problem for a pattern of length n and a 
text of length m(n 5 m), where we find  all  matches, can be 
solved  by m processors  in time O(1og m )  with probability of 
error smaller than 0.697/mk. 

The same method produces optimally parallel algorithms 
for string matching when the number of processors is 
<m/log n. A similar result was obtained by Vishkin [ 121,  via 
a considerably more complicated deterministic algorithm. 

Theorem I1 
If Y is an m X m array and x is an S-shaped pattern where 
1 SI = n and S is the union of c horizontal segments, then 
testing  whether X occurs in Y requires n - I + m2 + t . 
(2c - 1) multiplications of 2 X 2 matrices in 2,. The 
probability of a false match for a random choice of 
p I n . m4 is smaller than 6.971 fm2.  

Remark The above method is advantageous for shapes S 
such that c << I SI. In many cases it has the effect  of 
reducing the number of steps required to test whether X 
occurs in Y at position (a, b)  from the area of S to the 
diameter of S, i.e.,  essentially  from I SI to I SI 

If the same array Y is  repeatedly  probed  for the 
occurrence of patterns X , ,  X,, . . . , then the computation of 
f ( k ,  /), 1 5 k, /I m, will  serve for  all  these  probes. 

Conclusion 
We  have  seen that randomizing over a class of easily 
computable and easily updatable fingerprints produces very 
simple and efficient algorithms for a variety of one- 
dimensional and multidimensional pattern-matching 
problems. The salient point is that one can prove for these 
algorithms that they  lead to short expected computation 
time or run in real time with a negligible  probability  of error, 
for  every individual patternltext pair. 

The ideas and methods presented  here  have many 
variations and a wide  range  of additional applications. In 
particular, the second author has found another class  of 
fingerprint functions employing  polynomials  over  finite 
fields instead of integers [ 131. 

8. Parallel  pattern  matching 
The randomized pattern-matching algorithms lend 
themselves in a convenient way to parallelization. We treat 
the string-matching problem and employ the fingerprinting 
functions K, of Section  6. 

Let X = xIx2 . . . x, be a bit pattern and Y = yly2 . . . y ,  
be a bit text. Let p be a fixed (randomly chosen) prime. 
Define 

P( Y,  k) = yIy2 . . . yk ,  1 5 k 5 n, 

K p ( P ( y ,  k ) )  = Kp(y,)  ' K p ( y 2 )  ' ' ' . . Kp(yk), (4) 

where the matrix multiplication is done for 2 X 2 matrices 
o v a  z,. 
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