
Efficient
randomized
pattern-matching
algorithms

by Richard M. Karp
Michael 0. Rabin

We present randomized algorithms to solve the
following string-matching problem and some of
its generalizations: Given a string X of length n
(the pattern) and a string Y (the text), find the
first occurrence of X as a consecutive block
within Y. The algorithms represent strings of
length n by much shorter strings called
fingerprints, and achieve their efficiency by
manipulating fingerprints instead of longer
strings. The algorithms require a constant
number of storage locations, and essentially run
in real time. They are conceptually simple and
easy to implement. The method readily
generalizes to higher-dimensional pattern-
matching problems.

0. Introduction
Text-processing systems must allow their users to search for
a given character string within a body of text. Database
systems must be capable of searching for records with stated
values in specified fields. Such problems are instances of
the following string-matching problem: For a specified set
((X(i) , Y(i))) of pairs of strings, determine, if possible, an r
such that X(r) = Y(r). Usually the set is specified not by
explicit enumeration of the pairs, but rather by a rule for
computing the pairs (X(i), Y(i)) from some given data.

Wopyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

We present a randomized algorithm to solve this problem.
The algorithm associates with each string X a fingerprint
I#@') which is much shorter than the string itself. The search
for a match then compares short fingerprints instead of long
strings.

The algorithm selects thejngerprint function & at random
from a family of easy-to-compute functions. No matter
which input ((X(i) , Y(i))) is presented, the algorithm is
unlikely to produce a false match, in which two fingerprints
agree even though the original strings do not.

The most widely studied pattern-matching problem is the
following: Given a pattern X of length n and a text Y of
length m 2 n, find the first occurrence of X as a consecutive
substring of Y. Several linear time algorithms have been
given for this problem. The algorithms of Knuth, Moms,
and Pratt [I] (KMP in the sequel) and of Boyer and Moore
[2] require, for fast implementation, O(n) registers to store a
table of pointers. The characters of the text Y can come in a
stream and require no storage. But for fast implementation it
is useful to have portions of Y in main memory. The
algorithm of Galil and Seiferas [31 requires only @log n)
registers. Recently Galil and Seiferas [4] have found a real-
time algorithm using a constant number of registers.

Our method, based on fingerprint functions, runs
essentially in real time; the exact meaning of this statement
is spelled out in Theorem 4. It requires a constant number of
registers and needs a substring of length n of the text in main
memory. One version, described by Algorithm 3, runs
strictly in real time but allows a provably minuscule
probability of error.

produce the same theoretical time bounds as the
deterministic algorithms and require a competitive or

A considerable advantage of our algorithms is that they

249

RICHARD M. KARP AND MICHAEL 0. RABIN IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

250

smaller number of registers. At the same time they are
conceptually very simple and consequently easy to program.
For the classical linear string-matching case, they become
practically competitive only for rather long patterns, say
n = 200. For such long patterns it would seem that storing
pointer tables in registers is not feasible, so the classical
algorithms would slow down.

Our methods also apply when the pattern is a
multidimensional rectangular array of symbols or even an
irregularly shaped arrangement of symbols. In such
applications our time bounds are superior to those
previously known [5 , 61. Baker [5] has a linear-time
algorithm for d-dimensional arrays, but it requires
substantially more storage than our method. Bird [7] also
has a linear-time algorithm for two-dimensional arrays with
a storage requirement comparable to ours. Neither Baker's
method nor Bird's applies to irregular shapes.

literature on randomized algorithms [8] and provides further
evidence of the efficacy of algorithms that flip coins.

This work is a contribution to the growing body of

1. An example
In order to familiarize the reader with our approach and
demonstrate the extreme simplicity of the algorithm, let us
describe one version for the case of linear string matching.
Let the pattern and text be, respectively,

X = X l X 2 . . . x,, x, E (0, l) ,

y = YIY, . . . Y,, YjE IO, 11.

The restriction to the (0, 1 ilphabet is just for convenience.
Let Y(i) = y,y,+, . . . y,+,,-,; then a match occurs ifX = Y(i).
Define

a = x12"-' + . . . + X",

a(i) = ~ ~ 2 ' " ' + . . . + y,+,-,, 1 I i I m - n + 1.

The occurrence of a match is obviously equivalent to
a = a(i). For integers b, c let res (D, c) denote the residue of
b when divided by c. Note that if 0 I r,, r2 < p ,
then res (r , + r,, p) = r, + r, if r, + r2 p , and res (r , + r,, p)
= r, + r, - p otherwise.

Let p be a random_ly chosen prime in the range [1, nm2].
Denote res (b , p) = b, and let up denote the operation
u mod p for u = +, -, . . The algorithm starts by computing

a = (x , ', 2 +, x,) ', 2 +, x, . . .
and a(l). The computation is done in real time with a fixed
number of computer operations per bit of X and bit of Y as
they are read in (two adds, two comparisons, and up to two
subtractions per bit).

At the ith step, 1 I i I m - n, we have ci and a(i). If a #
a(& compute a(i + 1) by

a(i + 1) = (a(i) -, 2"" ., yi) ., 2 +, y,+,,

and test whether ci = a(i + 1).

-
"

-

RICHARD M. KARP AND MICHAEL 0. RABIN

If, for some i, d = a(i), then test whether X = Y(i) using
bit-by-bit comparison. If a match is found, stop. Otherwise
choose a new random p < nm2 and reinitialize the search at
place i + 1 in the text.

It is shown that for every X and Y, this randomized
algorithm runs in expected time m + c. It is "nearly real-
time." Another version, employing simultaneously several
randomly chosen primes, runs in real time. -

We require auxiliary storage to keep p , 2, ri(i), 2"-', i ,
where i is the pointer to the current place in Y.

We want to apply this basic idea to several pattern-
matching problems and use a variety of fingerprint
functions. It is therefore useful to develop a general
framework into which the above and all the other algorithms
will fit as special cases. This is done in the next section.

2. The general string-matching algorithm
In this section we establish a general framework that can be
specialized to yield several particular string-matching
problems and algorithms. An instance of the general string-
matching problem is specified by

Positive integers n and t.
An index set R of cardinality t.

0 For each r E R, strings X(r) and Y(r) in (0, 1)".

The problem is to decide whether there exists an index 7
such that X(r) = Y(r) and, if so, to find one such index.

Particular string-matching problems lead to particular
choices of R and particular rules for determining X(r) and
Y(r) from the input data and the index r. We indicate two
examples.

The linear pattern-matching problem
This is the familiar problem treated in Section 1: Given two
strings, a pattern X and a text Y, determine whether X occurs
as a consecutive block within Y. Suppose X = xIx2 . . . x,
and Y = y , y2 . . . y,,,, where each x, and each yj is a 0 or a I ,
a n d m r n . W e t a k e t = m - n + l , R = (1 , 2 , . . . ,
m - n + 11, X(r) = X for all r, and Y(r) = y,y,, . . . y,+"-,.

Two-dimensional array matching
This is the problem of determining whether a two-
dimensional array of Os and 1s occurs as a block within a
larger array. For notational convenience we take the arrays
to be square. Let X = (x,) be an s X s array of Os and Is,
and let Y = (y,,) be a m X m array of Os and 1 s, where
m 2 s. The problem is to determine whether there is
a pair (k , I) with s 5 k c m and s c I I m such that

- yk-, ,,-, for all i and j such that 0 I i I s - 1 and
0 I j I s -1. In other words, we are looking for an s X s

-

IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

subsquare of the text that exactly matches the pattern. To fit
this problem within the general framework, we may take
n = s ’ , t = (m - s + I f , a n d R = ((k , l) I s s k s r n a n d
s s Is m) . The string X((k, I)) is obtained by concatenating
together the rows of X, and Y((k, I)) is obtained by
concatenating together the rows of the s X s block within Y
having its lower right-hand comer in the (k, I) position.

A simple, straightforward method of solving a string-
matching problem is to impose a total ordering on the index
set R, and then march through R, testing, for each index r,
whether X (r) = Y(r). This is the method actually used in
many text-processing systems, and there are many situations
in which it is the method of choice. If n, the length of the
strings being compared, is very small, then the time to
compare two strings is small, and the method is quite
effective. If one can assume that the strings being compared
are random strings of Os and Is, then it takes only two bit
comparisons, on the average, to establish that X(r) # Y(r),
and so the method is again highly effective. But when n is
large and we are unwilling to make any assumptions about
the input data, the straightforward method may be
unacceptable, since nt bit comparisons are required in the
worst case.

We present a general approach to string matching which
may sometimes have advantages over both the
straightforward method mentioned above and some of the
more sophisticated and theoretically efficient methods that
have been proposed. Let S be a finite set and, for each p E S,
let bP(.) be a function from (0, 1)” into a range 0,. The
value bp(X) can be viewed as a “fingerprint” of the string X .
The algorithm will compute one or more fingerprints of each
string, and will compare X(r) with Y(r) only if the
corresponding fingerprints of the two strings agree. The
fingerprints thus serve as a preliminary filter which is highly
likely to establish that X(r) # Y(r), if indeed these two
strings are unequal. Since the fingerprints are much shorter
than the original strings, this screening process is likely to be
advantageous.

matching problems is not new. Many such techniques based
on check sums and hash functions can be found in the
literature. What is new is the particular way of choosing the
fingerprinting functions at random at run time. This
randomization technique permits us to establish very strong
properties of our algorithms, even if the input data are
chosen by an intelligent adversary who knows the nature of
the algorithm.

We give three different randomizing algorithms based on
the fingerprinting technique. For brevity, let up(r) and b,(r)
denote bp(X(r)) and bp(Y(r)), respectively. Assume that the
index set R is totally ordered. Let CY be the first element of R
and let w be an “end marker” that follows the last element
of R. Finally, for r E R, let r’ denote the successor of r in
R U (w) .

The idea of using fingerprinting techniques for string-

IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

Algorithm 1

var match:boolean; r:member of R; k:positive integer;
begin

for i := 1 to k do pi := randomly chosen element of
s;
match := false; r := a;
while match = false and r # w do

begin
ifu,(r) = b&r) for i = 1, 2, . e , k
then match := true;
r := r’
end

end

Algorithm 2

var match:boolean; r:member of R;
begin

p := randomly chosen element of S;
match := false; r := CY;
while match = false and r # w do

begin
if uJr) = bJr)
then if X(r) = Y(r) then match := true;
r := r’
end

end

Algorithm 3

var match:boolean; r:member of R;
begin

p := randomly chosen element of S;
match := false; r := a;
while match = false and r # w do

begin
if u,(r) = bp(r)
then if X(r) = Y(r)

then match := true;
else p := randomly chosen element of S
r := r‘

end
end

In comparing these algorithms, the concept of afulse
match is essential. A false match is said to occur in
Algorithm 1 if, for some r such that X (r) # Y(r), the
algorithm determines that uJr) = bJr) for all i = I , 2, + . ,
k. Similarly, in Algorithms 2 and 3, a false match occurs if,
for some r, the algorithm determines that u,(r) = bp(r)
but X(r) # Y(r).

string X(r) or Y(r). As soon as the fingerprinting functions
indicate a match, the algorithm reports that a match has
occurred and halts. Algorithms 2 and 3 compute only one

Algorithm 1 computes k fingerprinting functions for each

RICHARD M. KARP AND MICHAEL 0. RABIN

fingerprinting function. If the fingerprinting function
indicates that X (r) and Y(r) may be equal, these algorithms
then test whether X (r) and Y(r) are actually equal and, if
not, continue scanning the input. Algorithm 3 has the
additional feature that a new fingerprinting function is
selected whenever a false match occurs.

Algorithm 1 never backs up over the data. Thus, it is the
method of choice for a hardware implementation, or in any
situation where the input data are streaming past an input
terminal in an on-line fashion. Under reasonable
assumptions it is a real-time algorithm (i.e., it dwells for a
constant number of steps or each bit of its input), and it
lends itself to parallel computation since the k fingerprinting
functions can be computed independently. In this algorithm
a false match, if it occurs, will go undetected, and thus the
algorithm may erroneously report a match. However,
because of the randomization in the choice of the
fingerprinting functions, the probability of such an error can
be reduced to a truly negligible level; moreover, this will be
true uniformly, regardless of how the input data are chosen.

Algorithms 2 and 3 always give a correct result and, in the
absence of a match or false match, they also run in real time.
The time required to verify matches and to detect and
recover from false matches also contributes to their running
time. Since each of these algorithms makes a random choice
of fingerprinting functions, the running time of each is a
random variable even for a fixed input. We show that,
uniformly for all inputs, each of these algorithms can be
made to run in linear expected time. Moreover, we show
that the probability of a catastrophe, in the form of an
exceptionally long series of false matches, is negligible.
Algorithm 3, which hedges against catastrophe by changing
the fingerprinting function whenever a false match occurs, is
especially safe in this respect. The advantages of such
hedging are demonstrated in Section 5.

classes of string-matching problems, the following three
properties can be achieved simultaneously:

In support of the above claims, we show that, for certain

1. For all p E S, log, I 0, I << n, where n is the common
length of the strings X(r) and Y(r), and 0, is the range of
values of 4,; i.e., the fingerprints of the strings in question
can be represented much more compactly than the strings
themselves.

2. For every particular problem instance, there is only a

3. It is easy to compute a,(r') from a,(r) and b,(r') from
small probability that a false match will occur.

b,(r); i.e., fingerprints are easy to update.

All three properties depend on the choice of a family of
fingerprinting functions. Property 3 also depends on specific
details of the string-matching problem being considered and
on the total ordering of the index set R. 252

RICHARD M. KARP AND MICHAEL 0. RABlN

3. A family of modular fingerprint functions
A binary string X = x,x2 . . . x, can be regarded as a binary
representation of the integer

n

H (X) = 2 ~~2'"'.
i= I

For any integer p , the function H,(X) = H (X) mod p is a
possible fingerprint function. Let M be a positive integer to
be specified later. Define S = { p I p is prime and p 5 M) ,
and @,(X) = H,(X) for all X .

A random prime in the range [1, MI can be selected by
repeatedly choosing random integers in that range, testing
each for primality, and halting when a prime is found. The
expected number of trials is approximately In M. The time
to perform each primality test is O((1og M)') if we use the
probabilistic algorithms of Rabin [9] or Solovay and Strassen
[101. It is possible for these algorithms to incorrectly identify
a composite number as prime, but the probability of such an
error can be reduced to a completely negligible level. The
effects of such a rare mishap are insignificant if we use
Algorithm 3, which discards p as soon as a false match
0cCUl.S.

To study the properties of the family { H,) of fingerprint
functions based on primes, we require some number-
theoretic definitions and lemmas. Let *(u) denote the
number of primes CU.

Lemma I
If u z 29, then the product of the primes cu is >2"

Proof Theorem 18 of [1 11 states that the product of the
primes su is >exp (u - 2.05282~"~). This inequality
established the result for u 2 49, and the result can be
verified by direct computation for 29 5 u < 49. 0

Corollary I
If u z 29 and a c 2", then a has fewer than ~ (u) different
prime divisors.

Proof Suppose a has more than x(u) prime divisors, and
let these be q1 + . . q,. We obtain the contradiction

2" 2 a 2 qlq2 . . . q, 2 the product of the first r primes 2 the
product of the first T(u) primes = the product of the primes
less than or equal to u > 2".

Lemma 2 (Rosser and Schoenfeld [I I])
For all u z 17,

- 5 T(U) 5 1.25506 - U U
In u In u '

Theorem 3
If Algorithm 2 or Algorithm 3 is executed with
S = (p I p 5 M and p prime), then, for every instance
{ (X (r), Y(r)) , r E R), the probability that a false match

IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

occurs is

=?r(M)' *(nt) provided nt L 29.

Proof For a fixed input { (X (r) , Y(r)) , r E R] and any
prime p , occurrence of a false match when Algorithm 2 or
Algorithm 3 is executed with 4, as the initially chosen
fingerprint function is equivalent to each of the following
statements:

For each r, I H(X(r)) - H(Y(r)) I C 2". Hence

n IH(X(r)) - H(Y(r)) l c 2"'.
IrlX(r)+Y(Ol

By Corollary 1, the product has at most r(nt) prime divisors.
Thus p is chosen at random from T (M) primes, of which at
most r(nt) lead to a false match. It follows that, for a
random choice of p , the probability of a false match is at
most (*(nt))/(*(M)). 0

Theorem 4
If Algorithm 1 is executed with S = (p I p 5 M and p prime)
and 4, = H,, then, for every instance { (X (r) , Y (r)) , r E R 1,
the probability that a false match occurs is

5 (zr provided nt L 29

and

st ($)* provided n 2 29.

Proof A false match occurs only if each of the initially
chosen primes pI, p2, . . ., pk divides I H(X(r)) - H(Y(r)) I
for some r such that X(r) # Y(r). This implies that each of
these primes divides

n I H(X(r)) - H(Y(r)) I.
I r lX(rYY(r) l

Since this product is <2"', the number of primes that divide
it is sr(nt) , provided nt L 29. Hence, the probability that pI
divides this product is

and since the pi are drawn independently at random from
the primes dividing M, the probability that all k of the pi
divide this product is

5 ($-$
This proves the first inequality.

Since I H(X(r)) - H(Y(r)) I c 2", the number of primes
dividing 1 H(X(r)) - H(Y(r)) I is ST(n), provided X(r) #
Y(r) and n L 29. Hence, the probability that the randomly
chosen primes p, , p2, . . . , pk all divide I H(X(r)) - H(Y(r)) I
is

5 (g)):
and the probability that this occurs for some r E R is

This proves the second inequality. 0

Corollary 4(a)
If Algorithm 2 or Algorithm 3 is executed with S equal to
the set of primes sn t2 and 4, = H,, then, for every instance
of the input data n, t , { (X (r) , Y (r)) , r E R) such that
nt L 29, the probability that a false match occurs is
52.51 l/t.

Proof Apply Lemma 2 to bound a(nt) from above and
r(nt2) from below.

Corollary 4(b)
If Algorithm 1 is executed with S equal to the set of primes
snt2, then, for every instance of the input data n, t,
((X (r) , Y (r)) , r E R) such that n L 29 and for every choice
of the parameter k, the probability that a false match occurs
is 5 (1 .255)kt"2k-1'(1 + 0.6 In t)k.

Proof The probability of a false match is bounded above
by

Apply Lemma 2 and the inequality n z 29 to bound r(n)
from above and r(nt2) from below. 0

Corollaries 4(a) and 4(b) establish that it is possible to
achieve concise fingerprints that ensure a low probability of
a false match. For example, suppose Algorithm 2 is run on
an instance where n = 250, t = 4000, and M = nt2 =
4 X lo9. Then, for any p 5 M, the range of the fingerprinting
function H, is (0, 1, . . . , p - 11, where p 5 4 X lo9 < 232.
Hence each string of length 250 can be represented by a
32-bit fingerprint, and yet the probability that a false match
occurs will be less than lo". If Algorithm 1 with k = 4 is
run on the same instance with the same set of fingerprinting
functions, the probability of a false match is less than
2 x

4. Efficient updating for one-dimensional and
higher-dimensional problems
In this section we investigate the storage requirements and
execution times of our algorithms when the family (H,) of

IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987 RICHARD M. KARP AND MICHAEL 0. RABIN

fingerprint functions is used, where p is drawn from the set
of primes cnt'.

We assume that it requires constant time to fetch, store,
compare, add, or subtract fingerprints. This is reasonable
because a fingerprint is an integer in the range [0, nt2 - 11,
so that the number of bits needed to represent a fingerprint
is Tlog, d l . This is of the same order of magnitude as the
length of a pointer into the input data. In typical
applications of our methods, the length of a fingerprint does
not exceed the length of a register in the computer being
used. Moreover, in the case of linear pattern matching or
higher-dimensional array matching, the pattern of access to
fingerprints is predetermined and regular, so that it is
normally possible to fetch fingerprints from high-speed
registers rather than from memory.

of the algorithms are dominated by the updating operation,
in which a,(r ') is computed from a,(r) and b,(r') is
computed from b,(r). We show that, in the case of linear
pattern matching or higherdimensional m a y matching, the
time for each update is bounded by a constant. It follows
that, in these cases, Algorithm 1 is a real-time algorithm. By
this we mean that the algorithm makes a single pass through
its input data, dwelling for a constant time on each bit, and
then halts. Here we are assuming that the random primes
pI, p2, . . , pk are chosen in a preprocessing step, before the
input data arrive; this is valid only if the parameters n and t
(or upper bounds on these parameters) are available in
advance. Algorithms 2 and 3, which check for false matches,
run in time O(n + t) in the event that no false match occurs.
We later investigate the probability distribution of the
execution time of each of these algorithms, taking into
account the effect of false matches.

Since false matches are quite unlikely, the execution times

The linear pattern-matching problem
Let us recall how this problem, already treated briefly in
Sections 1 and 2, fits into the general framework. We are
given a pattern X E (0, 1)" and a text Y E (0, 1 I"', and wish
to determine whether X occurs as a consecutive block within
Y . H e r e t = m - n + l , R = (l , 2 , ..., m " n + 11,
X (r) = X = xIx2 . x,, Y(r) = y,y,+, . . . Y,+,,-~, LY = 1, and
r ' = r + 1.

We assume that the input is a string consisting of the
pattern X followed by the text Y. As the input is scanned
from left to right, the fingerprint of the pattern and the
fingerprints of the blocks within the text are computed with
a constant number of operations per bit of input.

Recall that H (Y(r)) denotes the integer represented by the
string Y(r). Then H(Y(r + 1)) = (H(Y(r)) - 2""y,) . 2 +
y,, . This gives the following formula for updating the
fingerprint of a block of the text:

where = -2" mod p. To initialize this computation, 254

RICHARD M. KARP AND MICHAEL 0. RABIN

one pretends that the text is preceded by a string
y-(,,-,)y-(n-,) . . . yo of n zeros. With this convention, we have

b,(-n) = 0

and

b,(r + 1) = (b,(r) + b,(r) + SY, + Y,") mod P,

where r ranges from -n to m - n, and y, = 0 for j c 0.
The fingerprint of the text X is computed in a similar
manner:

a,(-n) = 0

and

a,(r + 1) = (a,(r) + a,(r) + Sx, + x,,,) mod P,

where r ranges from -n to 0, and xi = 0 for j < 0. The
fingerprint of X is a, (1).

N o t e t h a t , i f O s r , s p - l a n d O = r , = p - 1,then
rl + r, mod p is either rl + r, or rl + r, - p. It follows that
updating can be performed with a constant number of
operations. On a typical single-address computer, four
fetches, three adds, three comparisons, two subtractions, and
one store are sufficient for updating. Moreover, since the
pattern of access to data is so simple and regular, it is
possible to keep the constants [and p, the fingerprint of the
pattern and the most recently computed fingerprint of a
block of text, in fast registers, and to fetch bits from the
pattern and text from memory into fast registers before they
are needed, so that all operations take their operands from
fast registers.

The storage requirements of Algorithms 1,2, and 3 are
modest. Algorithms 2 and 3 require six registers for data (to
store the constants and p, the fingerprint of the pattern, the
most recently computed fingerprint of a block of text, and
the two bits of input data needed for the current updating
step) and two address registers which contain pointers into
the input. Algorithm 1, which uses k fingerprinting functions
at once, requires 4k + 2 registers for data and two address
registers.

Theorem 5
Algorithm 1 is a real-time algorithm. For every input
consisting of a pattern of length n and a text of length m, the
expected running time of Algorithm 2 or Algorithm 3 is
O(n + m).

Proof The proof that Algorithm 1 is real-time is given
above. Algorithms 2 and 3 require O(n + m) time for
reading the input data and performing updating operations,
O(n) time to verify a match if one occurs, and O(n) time to
detect each false match that occurs. The probability of a false
match is at most 2.5 1 l/(m - n + I), and the maximum
number of false matches possible is m - n + 1, so the
expected time spent in detecting false matches is bounded
above by

IBM 1. RES. DEVELOP. VOL. Z I 1 NO. 2 MARCH 1987

- n + l) =

Thus the expected running time is O(m + n).
In Section 5 we make a further analysis of the probability

distribution of the execution time of Algorithm 3, showing
that Algorithm 3 rarely experiences a large deviation above
the expected execution time.

Two-dimensional array matching
In this subsection we sketch how Algorithms 1,2, and 3 can
be tailored to the two-dimensional array-matching problem
introduced in Section 2. To do so, we impose a linear
ordering on the index set R, and then show that fingerprints
can be updated rapidly as the algorithm marches through
this linear order.

R e c a l l t h a t R = ((k , I) I s s k s m a n d s s I s m) . W e
order R so that its first element is (s, s), its last element is
(m, m), and the successor of (k, I) is given by

(k , I)' = if k < m then (k + 1, I)
e lse(i f I<mthen(s , l+ 1)).

Geometrically, the algorithm starts with the s X s block in
the upper left-hand comer of the text, marches down until it
reaches the last row, moves to the highest position one
column to the right, marches down, etc.

Recall that, for any string X , H(X) denotes the integer
having X as its binary representation, and HJX) =
H(X)modp.Fork= 1,2, ..., m a n d I = s , s + 1, ..., m,
let wk, be the string yk,l-s+lyk,l-s+2 . . . ykl of length s. For
k = s , s + 1, + . . , m a n d I = s , s + 1, ..., m,letz,,bethe
string W~-~+~,,W,-~+~,, . w,, of length s2. Then z, is the bit
pattern obtained by concatenating together the rows of the
s X s block of a m y Y having position k, I in its lower right-
hand corner.

Let

cp((k, 0) = ff,CWk/)

and

bp((k, I)) = Hp(zk/).

Then cp((k , I)) is the fingerprint of the string of s bits in row
k having rightmost position k, I, and bp((k, I)) is the
fingerprint of the s X s block of Y with position k, I in its
lower right-hand comer. The following update formulas are
easily derived:

cp((k9 I)) = (2cp((k? - + tyk,/-s + YkJ) mod P, (2)

bp((k + 1, 1)) = ((bp((k, 1)) + 6 c,,((k - s + 1, 0)) X

+ cp((k + 1, 1))) mod P, (3)

where t = -2" mod p, X = 2s mod p, and 6 = -2'"-') mod p.
The right-hand side of (2) can be evaluated in constant time,

and the right-hand side of (3) can be evaluated in constant
time if we assume that multiplication mod p can be
performed in constant time. This would be true, for
example, if a hardware multiply/divide unit were available
that delivered the remainder in the case of integer division.

Given these update formulas it is easy to work out the
details of initialization and storage allocation for Algorithms
1, 2, and 3. Each of these algorithms requires O(m) storage
locations, and, in the absence of false matches, runs in time
O(m*), since the entire computation is camed out in a single
pass through X followed by a single pass through Y, with
constant execution time per position.

A simple trick reduces the storage requirements from
O(m) to O(s), at the cost of increasing the execution time by
a constant factor. The idea is to cover the m X m text array
with small subarrays, with the property that every s x s
block in the text occurs as a block in one of the subarrays.
The original algorithm can then be applied independently to
each subarray. The reader will easily verify that, for each
w z s, there exists a covering with

1 + 0 (:) m2
W

subarrays, each of which is (w + s - I) X (w + s - 1). The
running time then becomes

and the storage requirement is O(w + s - 1). Choosing
w = O(s) gives time O(m2) and storage O(s).

The algorithms generalize immediately to ddimensional
arrays, requiring O(m"') storage to process a
m X m X . . X m = md array. With the subarray-covering
trick, the storage can be reduced to O(sd"), with expected
running time o(md).

Bird [7] has given an extension of the KMP algorithm to
two-dimensional array matching, and his approach can also
be applied to d-dimensional array matching. His method
requires a fairly complex preliminary phase, in which the
pattern is processed to give arrays of length O(sd) whose
elements are pointers. Thus, our randomizing algorithm is
simpler and equally fast and, in the version based on
subarray covering, uses less storage.

5. The advantages of reinitializing
In this section we explore the properties of Algorithm 3, the
version of the fingerprinting method which discards its
current fingerprint function whenever a false match occurs.
We show that this algorithm has two important advantages,
which in some environments outweigh the overhead of
reinitializing the fingerprint function after a false match:

1. Reinitializing is a hedge against catastrophe. It reduces to
a completely negligible level the probability that a long
series of false matches will occur. 255

RICHARD M. KARP AND MICHAEL 0. RABIN

256

2. The performance of the method remains good when
fingerprinting is based on arbitrary moduli rather than
primes.

Hedging against catastrophe
Suppose we are presented with an instance of the linear
pattern-matching problem in which the pattern X is the
binary representation of a multiple of the prime p, and
Y = 0'". Then if Algorithm 1 or Algorithm 2 is executed with
H, as its fingerprint function, a false match occurs in each of
the m - n + 1 possible positions where X is tested for an
occurrence within Y. The following theorem shows that
choosing Algorithm 3 renders the possibility of such a
catastrophe remote regardless of how X and Y are chosen.

Theorem 6
Suppose Algorithm 3 is applied to an instance of the general
string-matching problem specified by ((X (r), Y(r)), r E R) ,
where 1 R 1 = t and each string X(r) or Y(r) is of length n.
If S is the set of primes less than or equal to M = nt' and
4, = H,, then the probability that k or more false matches
occur is ~ (2 . 5 1 I/$.

Proof By Corollary 4(a), each time a new prime p E S is
randomly chosen, the probability of a false match is at most
2.51 llt . 0

Fingerprinting using arbitrary moduli
We consider the behavior of Algorithm 3 when the
fingerprinting process is based on arbitrary moduli, rather
than primes; i.e., we take S = (1, 2, . . ., M) , with 4, = H,.

We require two number-theoretic lemmas.

Lemma 7 [1 I]
There is a constant B such that, for all positive integers x,

P=X

Let M be a positive integer. Call an integer x MTfat if 1 s
x 5 M and x has a prime divisor p > &. Let F(M) denote
the number of M-fat integers.

Lemma 8
For M 5 9000, F(M) B Ml2.

Proof For any prime p the number of positive integers less
than or equal to M and divisible by p equals LMIpJ. If
x 5 M is M-fat, then exactly one prime p > divides x.
Thus

F (M) = [$] z M E -j-r(M). 1
JGCpShf JG"

Applying Lemma 2 and Lemma 1 1,

P prime P prime

1.25506M
In M

-

Now

M 2 9000 + In M 2 9.1 - F(M)

9 1.25506) , $
B M 0.693 - - - - (2.(9.1)' 9.1

We now estimate the probability of a false match when
randomly chosen M-fat numbers are used for fingerprinting.

Lemma 9
Consider an instance of the general pattern-matching
problem in which t = n. If we use Algorithm 3 with
S = (p I p is M-fat), where

and @,(Y) = H(Y) mod p, then the probability of a false
match is 5112.

Proof The proof proceeds along the lines of Theorem 3
and Corollary 4(a). In this case I R I = n and a false match
occurs only if the M-fat integer p divides

P = n I H(X(r)) - H(Y(r))I s 2"'.

Let L be the number of "fat integers x that divide P. For
each such x there is a prime q > &l that divides x, and each
such prime occurs in at most & different divisors of P.
Thus P has at least L/& distinct prime divisors > &, so

X(rkCYV)

5 P 5 2"'. Passing to logarithms,

n2 &
L S -

log2&'

Since the number of M-fat integers is >(M/2), the
probability that a randomly chosen M-fat integer trigers a
false match is

L 2n2 5 - <
MI2 - Jz log2&'

For the indicated choice of M,

2n2 e-. 0
1

&log2& 2

Corollary 9
Suppose Algorithm 3 is applied to an instance of the general
string-matching problem specified by { (X(r) < Y(r)), r E R) ,
where I R I = t and each string X(r) or Y(r) is of length n.

RICHARD M. KARF' AND MICHAEL 0. RABIN IBM I. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

Assume that fingerprints can be updated in constant time, as
in the case of linear pattern matching or two-dimensional
array matching. If S is the set of positive integers I M , where

M = m a x -
((In n f ') 6.25n4

9ooo ,

then the expected running time is O(n + t) .

Proof Apart from detecting false matches and restarting
the fingerprinting process after a false match, the running
time is O (n + t) . The time overhead associated with
detecting a false match and resuming the computation is
O(n) . With probability >1/2, the p chosen after a false
match is M-fat. I fp is M-fat, then, with probability >1/2, the
computation will advance through at least n indices r E R
before the next false match occurs. Hence, the expected
number of false matches is O(t /n) , and the expected time
spent in dealing with false matches is O(t). 0

6. A second family of fingerprint functions
In this section we present another interesting family { K,) of
fingerprint functions. For each positive integer, p , K, is a
homomorphism from (0, I)* into the group of 2 X 2
unimodular matrices with entries in 2,. the ring of integer
residues mod p .

Let X denote the null string. Define a homomorphism K
from (0, I)* into 2 X 2 nonnegative integer unimodular
matrices by

and

where * denotes concatenation of strings and . denotes
matrix multiplication. For any positive integer p , the
function K, is defined in the same way, except that all matrix
elements are regarded as elements of 2, rather than as
integers.

The function K has the following easily provable
properties:

1 . K is a monomorphism; i.e., K (X) = K(Y) X = Y.
2. If X E (0, I In , then each element of K (X) is less

than or equal to F,,, the nth Fibonacci number
(F,, = F, = I , F, = Fn-l + Fn-2, n 2 2).

In comparison with the family (H,) of fingerprint
functions, the family { K,) has the disadvantage that each
fingerprint consists of four integers mod p , rather than one.
We show that the two families are about equally effective in
avoiding false matches, and that the use of (K,) leads to
remarkably simple updating methods.

IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

Theorem 10
If Algorithm I is executed with S = (p 1 p I M and p is
prime) and 6, = K,, then, for every instance { (X (r) , Y(r)) ,
r E R), the probability that a false match occurs is

where t = I RI.

Proof The proof is similar to the proof of Theorem 4. If a
false match occurs, then, for some r E R and some 1 5 i,
j s 2,

K (X W) , j + K(YW)&, >

but

Kp(X(r))i,j = K,(Y(r))i,j *

It follows that p divides the product of all the nonzero
terms of the form I K(X(r)i , j - K(Y(r)) j , j l , r E R, i E (1 , 21,
j E (1 , 2) . This product is bounded above by F:, which in
turn is 12r41 log2 F.1 . By Corollary I , the number of primes

which divide this product is sx (r4 t log, F,,l). The result now
follows, since p is chosen at random from a set of *(M)
primes. 0

Corollary IO
If Algorithm 1 is executed with S = { p I p 5 nt2 and p
prime) and 6, = K,, then, for every instance of the input
data { (X (r), Y(r)) , r E R 1, the probability that a false match
occurs is 56.97l l t .

Proof Apply Theorem 10, Lemma 2, and the fact that
log, F, - 0.694n. 0

We next demonstrate that, when Algorithm 1 is used with
6, = K,, elegant updating methods result. For example, in
the string-matching problem, the counterpart of Equation (I)
is

a,@ + 1) = A,(~,)-'ap(r)Ap(Yp,,).

Here all matrices are over Z,,

and

and similarly for the two-dimensional array-matching
problem, using appropriate counterparts to Equations (2)
and (3).

7. Fingerprinting techniques for irregular shapes
In this section we demonstrate that randomized algorithms
based on fingerprinting techniques can be applied not only 257

RICHARD M. KARP AND MICHAEL 0. RABIN

A shape S. As in arrays, the x coordinate designates rows and the J

coordinate columns.

1 A pattern X of shape S.

to the matching of strings and arrays, but also to matching
problems involving patterns of irregular shape. Let Z denote
the set of integers. Define a shape S as a finite subset of
Z X Z which includes (0,O). The size of S is by definition
I SI = n. A pattern of shape S is a function X : S + (0, 1).
See Figures 1 and 2.

m X m array of Os and 1s; more precisely, Y is a function
Let S be a shape, and X a pattern of shape S. Let Y be an

258 from { 1,2, . . , m J 2 into (0, 1) . Define S + (a, b) =

RICHARD M. KARP AND MICHAEL 0. RABlN

{(x + a, y + b) I (x, y) E S) . We say that X occurs in Y at
(a, b) if

S + (a , b) G {1 ,2 , ..., m) X { I , 2, ..., m)

and

for all (x, y) E S, "(x, y) = Y(x + a, y + b).

The pattern-matching problem in this case is the following.
Given a two-dimensional array Y and a pattern X of shape
S, does X occur in Y?

The straightforward algorithm requires, for an m X m
array and for shapes of size n, about m2n steps. Our general
fingerprinting method in many cases reduces the number of
steps to m2 J i + n.

Define a horizontal segment as a subset of N X N of the
f o r m { k l x (y E N I I ~ y s r J .

Given a shape S, we can decompose it into maximal
horizontal segments and arrange these in some definite order
I , , . . . , I,. Our method is efficient, as compared with the
straightforward method, whenever the number of segments
satisfies c << I SI = n. For example, for shapes S which are
circles, or ring-shaped with the interior radius half of the
exterior radius, or equilateral triangles, we have c = O(&).

Assume that we want to solve the pattern-matching
problem for a two-dimensional m X m array and a pattern X
of a favorable shape S of size n. In order to cast this problem
into the general framework of Algorithm 1, decompose S
into a disjoint union I , U . . . U IC of horizontal segments
whereI,= {k,) X { $ s y ~ r , J , 1 s j s c . L e t m i n (x) =
mink,, max(x) = maxk,, min(y) = minl,, max(y) = maxr,.
Note that since (0,O) E S, we have min(x), min(y) I 0.
Define

R = ((a, b) 1 1 - min(x) I a s m - max(x),

1 - min(y) s b I m - max(y)J

a n d l R l = t . T h u s S + (a , b) C { l , . . . , m J Z iff (a ,b)ER.
We have t s m2. Unravel X into a string by defining

X (4) = X(k,, r,) X(k,, 4 + 1) . . . X(k,, rj)

1 = "(I ,) X(&) . . . X(Zc) E (0, 1 Y .

and

Similarly, the 0-1 pattern formed in the array Y by the shape
S + (a, b) is unraveled into a string y(a, b), (a, b) E R. Thus
we have the string-matching problem {(x, F(a, b)) ,
(a, b) E RJ, and the solution of this problem will tell us
whether the pattern X occurs in the two-dimensional array
Y.

Section 6. Choose a random prime p s nt2 5 nm4. Then
It is most convenient to use the fingerprint functions K, of

c 5

j - l y==$
K,(x) = n n K,("(k,, Y)).

Thus, calculating K,(x) requires n - 1 multiplications of
2 X 2 matrices in 2,.

IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

We want to calculate the K,(F(a, 6)) by 2c - 1 operations
per fingerprint. To this end, preprocess Y as follows.
Associate with each position (k , /), where 1 5 k, m, the
cumulative product of matrices corresponding to the lowest /
bits in the kth row of Y, Le., the matrix

f (k , 4 = Ii Kp(Y(k A) .

These matrices can be computed at the cost of m(m - 1)
multiplications of 2 X 2 matrices over 2,. The matrices
f (k , I) are stored in an appropriate array. Note that each
f (k , /) is a unimodular matrix, and for such a matrix

J= I

Since matrix multiplication is associative, it follows from
the parallel-prefix computation theorem that all the products
(4) can be computed in parallel in time @log m), using m
processors. Similarly, K,(X) can be computed in time
O(1og n) , using n processors. Denoting, as in Section 2,
Y(r) = yr+, . . . Y,+,,-~, 1 I r I m - n + 1, the fingerprints

K,(Y(r)) = K,(P(Y, r - l))".Kp(P(Y, r + n - 1))

can be computed in parallel, using m processors, in constant
time. Finally, the comparisons K,(X) = K,(Y(r)) can be
done in parallel, using m - n + 1 processors, in constant
time. Using Corollary 10, but choosing the prime in the
range [1, nmk], we get the following.

With thef(k, /) available, we can calculate K,(y(a, b)) for
(a, b) E R by 2c - 1 matrix multiplications,

K,(P(a, b)) = II f"(kJ + a, 5 + b) f (k j + a, rj + b).
C

J= I

Summing up our results, we have the following direct
corollary of Theorem 10 and Corollary 10.

Theorem 12
The string-matching problem for a pattern of length n and a
text of length m(n 5 m), where we find all matches, can be
solved by m processors in time O(1og m) with probability of
error smaller than 0.697/mk.

The same method produces optimally parallel algorithms
for string matching when the number of processors is
<m/log n. A similar result was obtained by Vishkin [121, via
a considerably more complicated deterministic algorithm.

Theorem I1
If Y is an m X m array and x is an S-shaped pattern where
1 SI = n and S is the union of c horizontal segments, then
testing whether X occurs in Y requires n - I + m2 + t .
(2c - 1) multiplications of 2 X 2 matrices in 2,. The
probability of a false match for a random choice of
p I n . m4 is smaller than 6.971 fm2.

Remark The above method is advantageous for shapes S
such that c << I SI. In many cases it has the effect of
reducing the number of steps required to test whether X
occurs in Y at position (a, b) from the area of S to the
diameter of S, i.e., essentially from I SI to I SI

If the same array Y is repeatedly probed for the
occurrence of patterns X , , X,, . . . , then the computation of
f (k , /), 1 5 k, /I m, will serve for all these probes.

Conclusion
We have seen that randomizing over a class of easily
computable and easily updatable fingerprints produces very
simple and efficient algorithms for a variety of one-
dimensional and multidimensional pattern-matching
problems. The salient point is that one can prove for these
algorithms that they lead to short expected computation
time or run in real time with a negligible probability of error,
for every individual patternltext pair.

The ideas and methods presented here have many
variations and a wide range of additional applications. In
particular, the second author has found another class of
fingerprint functions employing polynomials over finite
fields instead of integers [131.

8. Parallel pattern matching
The randomized pattern-matching algorithms lend
themselves in a convenient way to parallelization. We treat
the string-matching problem and employ the fingerprinting
functions K, of Section 6.

Let X = xIx2 . . . x, be a bit pattern and Y = yly2 . . . y ,
be a bit text. Let p be a fixed (randomly chosen) prime.
Define

P(Y, k) = yIy2 . . . yk , 1 5 k 5 n,

K p (P (y , k)) = Kp(y,) ' K p (y 2) ' ' ' . . Kp(yk), (4)

where the matrix multiplication is done for 2 X 2 matrices
o v a z,.

Acknowledgments
Dr. Karp's work was supported by NSF Grant MCS77-
09906 and by the Miller Institute for Basic Research in
Science. Dr. Rabin's work was supported by NSF Grant
MCSSO- 127 16 at the University of California at Berkeley
and by NSF Grant MCSS 1-2 143 1 at Harvard University.

References
1 . D. E. Knuth, J. H. Moms, and V. R. Pratt, "Fast Pattern

Matching in Strings," SIAM J. Computing 6, 323-350 (1977).
2. R. S. Boyer and J. S. Moore, "A Fast String Searching

Algorithm," Commun. ACM 20,162-772 (1977).
3. Z . Galil and J. Seiferas, "Saving Space in Fast String Matching,"

SIAM J. Computing 9,4 17-438 (1980).
4. Z. Galil and J. Seiferas, "Time-Space Optimal String Matching,"

Proc. 13th Annual ACM STOC, 198 1 , pp. 106-1 13. 259

IBM J. RES, DEVELOP. VOL. 31 NO. 2 MARCH 1987 RICHARD M. KARP AND MICHAEL 0. RABIN

5.

6.

7.

8.

9.

10.

1 I .

12.

13.

T. P. Baker, “A Technique for Extending Rapid Exact String
Matching to Arrays of More than One Dimension,” SIAM J.
Computing 7,533-541 (1978).
R. M. Karp, R. E. Miller, and A. L. Rosenberg, “Rapid
Identification of Repeated Patterns in Strings, Trees and
Arrays,” Proc. 4th Annual ACM STOC, 1972, pp. 125-136.
R. S. Bird, “Two Dimensional Pattern Matching,” Info. Proc.
Lett. 6, 168-170 (1977).
M. 0. Rabin, “Probabilistic Algorithms,” Algorithms and
Complexity, Recent Results and New Directions, J. F. Traub,
Ed., Academic Press, Inc., New York, 1976, pp. 21-40.
M. 0. Rabin, “Probabilistic Algorithm for Testing Primality,” J
Number Theor. 12, 128-138 (1980).
R. Solovay and V. Strassen, “A Fast Monte-Carlo Test for
Primality,” SIAM J. Computing 6, 84-85 (1977).
J. B. Rosser and L. Schoenfeld, “Approximate Formulas for
Some Functions of Prime Numbers,” Illinois J. Math. 6,64-94
(1962).
U. Vishkin, “Optimal Parallel Pattern Matching in Strings,”
Info. Control 67,91-113 (1985).
M. 0. Rabin, “Fingerprinting by Random Functions,” Report
TR-15-81, Center for Research in Computing Technology,
Harvard University, Cambridge, MA, 198 1.

Received December 17, 1986; accepted for publication
January 6, 1987

260

RICHARD M. KARP AND MICHAEL 0. RABlN

Richard M. Karp University of California, Berkeley, California
94720. Dr. Karp received his Ph.D. in applied mathematics from
Harvard University, Cambridge, Massachusetts, in 1959. He was a
Research staff member in the Mathematical Sciences Department at
the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, from 1959 to 1968. In 1968 he became professor of
computer science and operations research at the University of
California. In 1980 he also became professor of mathematics at the
University. Dr. Karp was co-chair of program and computational
complexity at the Mathematical Sciences Research Institute from
1985 to 1986. He was the Miller Research Professor at the
University from 1980 to 198 1. He is a member of the American
Academy of Arts and Sciences and the National Academy of
Sciences. Dr. Karp received the Lanchester Prize in 1977, the
Folkerson Prize in 1979, the ACM Touring Award in 1985, and the
Distinguished Teaching Award in 1986. Areas of interest to him are
combinatorial algorithms and computational complexity.

Michael 0. Rabin Harvard University, Cambridge, Massachusetts
02138. Dr. Rabin is the first appointed Thomas J. Watson Sr.
Professor of Computer Science at Harvard University. He received
his M.Sc. degree from the Hebrew University, Jerusalem, Israel, in
1953, and his Ph.D. from Princeton University, New Jersey, in 1956.
From 1956 to 1958 he was H. B. Fine Instructor in Mathematics at
Princeton University, and he was a member of the Institute for
Advanced Study in 1958. He became senior lecturer at the Hebrew
University of Jerusalem in 1958, advancing to the rank of full
professor in 1965. During his tenure at the Hebrew University he has
been chairman of the Institute of Mathematics (1964-1966),
chairman of the Computer Science Department (1970-1971), and
rector (academic head) of the University (1972- 1975); he was
appointed the University’s first Albert Einstein Professor (1980). In
198 1 he was named Gordon McKay Professor of Computer Science
at Harvard University and became Thomas J. Watson Sr. Professor
in 1983. He currently serves on the faculties of both Harvard and the
Hebrew University. Professor Rabin serves on the editorial boards of
the Journal of Computer and Systems Sciences, the Journal of
Combinatorial Theory, the Journal of Theoretical Computer Science,
the Journal ofdlgorithms, and Information and Control. Among the
awards he has received are the C. Weizmann Prize for Exact
Sciences (1960), the Rothschild Prize in Mathematics (1974), the
A. M. Turing Award in Computer Science (co-winner, 1976), and
the Harvey Prize in Science and Technology (1980). He is also a
foreign honorary member of the American Academy of Arts and
Sciences (elected 1975), a member of the Israel Academy of the
Sciences and Humanities (elected 1982), and a foreign associate of
the National Academy of Sciences (elected 1984). His research
interests include complexity of computations, efficient algorithms,
randomizing algorithms, parallel and distributed computations, and
computer security. Dr. Rabin is also interested in bringing
traditional mathematical tools to bear on computer science problems
of foundational as well as practical significance.

IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

