
Technical Note: Sequencing

Introduction
Recent technological advances have dramatically improved next-gen-
eration sequencing throughput and quality. Illumina’s Genome Analyzer
(GA) produces a significant larger volume of sequence data than tradi-
tional Sanger sequencing. Compared to just a few years ago, it is now
much easier and cheaper to sequence entire genomes, and a wide
variety of species are being studied using these advanced genetic
analysis tools. Because of the rapid improvements in cost and quality
of sequencing data, de novo sequencing and assembly is possible not
only in large sequencing centers, but also in small labs.

In parallel with the technological improvements that have increased
the throughput of the next-generation short-read sequencers, many
algorithmic advances have been made in de novo sequence assem-
blers for short-read data. High quality de novo assembly using Illumina
Genome Analyzer reads is possible today using many of these assem-
blers. Here we summarize the results of several de novo sequencing
experiments using E. coli and human data.

Assembling a genome using the reads generated by the Genome
Analyzer requires a different approach than the overlap methods that
were developed for the long reads produced by Sanger sequencing.
For example, the software packages that assemble the reads into a
genome need to be able to process a large number of short reads. A
critical step during assembly is the optimization of parameters such
as coverage, paired-end insert length, and data quality filtering. After
proper optimization, we show that, for Escherichia coli, we are able to
achieve a genome coverage of up to 99.4% (N50 = 82,595 bp; largest
scaffold = 482,333 bp) and 99.72% (N50 = 97,333 bp; largest scaffold
= 233,793 bp) with two assemblers tested. While larger genomes re-
quire large amounts of memory, the latter assembly was replicated on
a 64 bit Linux desktop with a 2 Ghz processor and 4 Gb of RAM in 24
minutes. Additionally, by randomly removing sequencing reads such
that the sequence data covered the genome at 50× depth, we were
able to replicate the numbers above on a 32 bit Windows desktop
with 3 Gb of RAM in 15 minutes processing time, using the Linux-
like environment Cygwin. This demonstrates that in some instances,
de novo assembly can be performed with minimal computational
resources.

In this technical note, we provide guidance for designing studies and
filtering data to produce high quality assemblies (see Figure 1 for a
de novo assembly workflow). In addition, we test various publicly avail-
able packages in assembling a bacterial and a human genome.

Assemblers
There are two basic approaches in algorithms for short-read assem-
blers: overlap graphs and de Bruijn graphs. These approaches are
described below.

Overlap Graphs
Most established assemblers that were developed for Sanger reads
follow the overlap-layout-consensus paradigm. They compute all
pair-wise overlaps between the reads and capture this information in
a graph. Each node in the graph corresponds to a read, and an edge
denotes an overlap between two reads (Figure 2). The overlap graph
is used to compute a layout of reads and a consensus sequence of
contigs. This method works best when there is a limited number of
reads with significant overlap.

 Figure 1: De Novo Assembly Workflow

Prepare Insert Libraries

Simulations to Estimate Coverage (optional)
 Ensure coverage is ≥ 50

Combine high-coverage short-insert library with long-insert libraries

Genome Analyzer Run

Apply Quality Filters

Check Quality of Assembly

Map to Reference Genome (if available)
Genome Coverage

Contig size distribution: N50, longest contig/scaffold
Align reads to contigs

Contigs

Bacterial Assembly

(de Bruijn graph methods)
Choice of k

Velvet or
SOAPdenovo

(overlap methods)

Forge

Scaffolds/supercontigs

Output

Contigs

Mammalian Assembly

(de Bruijn graph methods)
Choice of k

ABySS

Output

De Novo Assembly Using Illumina Reads
High quality de novo sequence assembly using Illumina Genome Analyzer reads is possible
today using publicly available short-read assemblers. Here we summarize the results of several
de novo assembly experiments. We show that for E. coli, genome coverage of as high as 99.4%
(N50 = 82,595 bp) and 99.72% (N50 = 97,333 bp) can be achieved with two of the assemblers
tested and short inserts. The latter assembly job completed in 15 minutes on a 32 bit Windows
desktop with 3 GB of RAM, indicating that in some instances, de novo assemblies can easily be
performed with existing computer resources in the laboratory.

Technical Note: Sequencing

Some assemblers for next-generation sequence data use overlap
graphs, but this traditional approach is computationally intensive: even
a de novo assembly of simple organisms needs millions of reads, mak-
ing the overlap graph extremely large.

De Bruijn Graphs
Because overlap graphs do not scale well with increasing numbers of
reads, most assemblers for next-generation sequencing use de Bruijn
graphs. De Bruijn graphs reduce the computational effort by break-
ing reads into smaller sequences of DNA, called k-mers, where the
parameter k denotes the length in bases of these sequences. The de
Bruijn graph captures overlaps of length k-1 between these k-mers
and not between the actual reads (Figure 3).

is best found by testing a small range of values. We provide more
details in the “Recommendations” section.

Another attractive property of de Bruijn graphs is that repeats in the
genome can be collapsed in the graph and do not lead to many
spurious overlaps, although this does not mean that they can be
more easily bridged or resolved. The maximum size of the de Bruijn
graph is independent of sequence depth with an upper bound of 4k.
Depending upon the genome being sequenced and the value of k,
the de Bruijn graph may not reach the theoretical maximum, but in the
presence of sequencing errors or biological variation, the memory foot-
print of the graph increases. Nevertheless, it has been our experience
that reasonable error rates do not significantly increase the memory
requirement.

A Sampling of Assemblers for Short Reads
The software package Velvet1 was among the first assemblers for
short reads and is now widely used. It implements an approach based
on de Bruijn graphs, uses information from read pairs, and implements
various error correction steps after building the graph. Velvet has suc-
cessfully been used to assemble bacterial genomes1.

SOAPdenovo2 also implements a de Bruijn graph approach. In con-
trast to Velvet, error correction is performed before the actual graph is
built.

The assemblers ABySS3 also uses the de Bruijn graph method. Its ad-
vantage is that it can be run in a parallel environment and thus has the
potential to assemble much larger genomes. For example, Simpson
et al. demonstrate the assembly of a human genome using ABySS3.
SOAPdenovo also implements a parallel assembly algorithm based on
de Bruijn graphs but details of this tool are not yet published.

Forge5 implements an overlap-layout-consensus approach with
various changes to accommodate Illumina reads. It distributes the
computational and memory consumption on various nodes and has
therefore the potential to assemble much larger genomes, despite not
being a de Bruijn graph method.

An overview of the tested assemblers is given in Table 1.

 Figure 2: Overlap Graph of Five Reads

AGATTACGAT

CGATTTAGAT

AGATAGCGAA

CGAAAGCACGATCACGAA

Colored nucleotides indicate overlaps between reads.

 Figure 3: De Bruijn Graph for Read with K=3

AGATGATTCG

AGA GAT ATG TGA

ATT

TTC TCG

AGA
GAT
ATG

TGA

ATT
TTC
TCG

Read:

3-mers:

De Bruijn
Graph

GAT

The length of overlaps is k-1=2. Gray arrows indicate where all the k-mers
derived from the one read are placed in the graph. Blue arrows indicate the
order of the k-mers and their overlaps.

By reducing the entire data set down to k-mer overlaps the de Bruijn
graph reduces the high redundancy in short-read data sets. The maxi-
mum efficient k-mer size for a particular assembly is determined by the
read length as well as the error rate. The value of the parameter k has
significant influence on the quality of the assembly. Estimates of good
values can be made before the assembly, but often the optimal value

 Note

The analysis presented here represents a snapshot in time of a subset
of the currently available assemblers. For example, much of our analysis
was performed using Velvet version 0.7.31 but several releases have oc-
curred since we downloaded and tested this software. Assemblers evolve
constantly and we anticipate that new methods will be developed to allow
mammalian genomes to be more rapidly and efficiently assembled.

Comparing Assembly Outcomes
The outcome of an assembly is a set of contigs. A contig is a con-
tiguous assembled piece of DNA sequence. Some assemblers also
compute scaffolds, which is a set of contigs for which the relative
orientation and distance is known. An alternative to scaffolds are
supercontigs: contigs in which gaps are allowed.Gaps are usually
denoted by the letter ‘N’ in the DNA sequence.

 Technical Note: Sequencing

The following metrics are often used to compare the quality of as-
semblies:

•	 N50—The contig length such that 50% of the de novo
assembled genome lies in blocks of this size or larger. N80 or
N60 are also used.

•	 Genome coverage—The percentage of bases in the reference
covered by the assembled contigs. This can only be computed
if a reference genome exists, and the way the assembled
contigs are mapped to the reference can have a significant
influence on this parameter. Popular tools for mapping include
BLAST6, MUMmer7, and SSAHA8. Contigs aligning with large
internal gaps or low confidence indicate either structural
variants or misassemblies, and should be carefully monitored.
If paired reads are available, mapping them back onto the
contigs is another source of information. Large deviations in
the mapping distances or read pairs in which only one read
maps against the contig hint at misassemblies rather than
structural variants.

•	 Maximum/median/average contig size—Usually calculated
after removing the smallest contigs (for example removing all
contigs less than 150 bp in length).

The contig sizes and their distribution are convenient and straight-
forward quality metrics but they do not contain all of the information
needed to judge quality. For example, an assembly comprising several
medium-sized contigs can be high-quality if these contigs cover the
inter-repeat regions of the genome with high accuracy. On the other
hand, an assembly consisting of one large contig with roughly the
length of the genome being assembled is useless if the contig is incor-
rectly assembled.

Sequencing Parameters
The most important sequencing parameters are discussed in this
section. We also provide examples of assemblies of E. coli data using
Velvet to illustrate the influence of the parameters on the quality of the
assembly. We performed several assemblies with Velvet, using different
values of k, and determined that Velvet works best with k=31 for the
E. coli data set. Note that higher values of k may perform better but
Velvet 0.7.31 only supports values up to 31. This value of k was used
throughout the work described here.

 Figure 4: Effect of Coverage

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Coverage
N

50
 c

o
nt

ig
 s

iz
e

(k
b

)

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Coverage

M
ax

 V
el

ve
t

m
em

o
ry

 u
se

 (G
b

)

Effect of coverage on N50 contig size and memory requirements in an E.
coli de novo assembly.

Coverage
A high-quality de novo assembly cannot be achieved unless there is a
sufficient number of error-free reads covering the entire genome. To

achieve this and thus produce a high-quality assembly, a high depth of
coverage is essential. The coverage needed will depend on the organ-
ism, its genome size, and the repeat content. To give an example, the
Beijing Genomics Institute sequenced the Giant Panda genome using
75 bp reads at a coverage of 50×11.

To evaluate the influence of coverage on a bacterial assembly, we cre-
ated simulated data sets based on the E. coli genome using error-free
reads. We simulated 75 bp paired-end data sets with a 200 bp insert
size assembled using Velvet 0.7.31 (Figure 4) and different coverages.

As can be seen from Figure 4, a coverage of more than 50× does
not yield a significant improvement in terms of the contig sizes. Since
Velvet’s memory usage increases with sequencing depth, higher cov-

 Table 1: Overview of Tested Assemblers

Algorithm Description Strength Genomes Assembled

Velvet De Bruijn graph based
Error corrections after graph is built

Fast (~30 mins)
Easy to use
Larger supercontig N50

Bacterial (Ref. 1; this techni-
cal note)

SOAPdenovo De Bruijn graph based
Error correction before graph is built

Easy to use
Multi-threaded mode

Panda, Bacterial (Ref. 11;
this technical note)

ABySS De Bruijn graph based
Can be run in parallel
Distributed memory model (efficient)

Easy to use
Largest contigs/scaffolds
Best suited for large genomes

Human (Ref. 3; this techni-
cal note)

Forge Overlap-layout-consensus method
Modifications to accommodate Illumina reads

Largest contigs/supercontigs
Good “long read” assembler

Bacterial (this technical note)

Technical Note: Sequencing

erage can require a significantly larger amount of memory with little or
no improvement in assembly quality.

To further examine whether 50× coverage is sufficient, we used real
sequencing data: a single GA lane from a 200 bp insert library of E.
coli with 75 bp paired reads. After removing reads that did not pass
the GA analysis software Failed_Chastity filter (described later) or
containing Ns, the coverage is 320×. From this starting data, we ran-
domly removed reads to generate samples with lower coverage, and
assembled using Velvet 0.7.31.

Table 2 shows that the contig sizes drop as expected when the cover-
age drops under 50×, but contig sizes remain stable at higher cover-

We simulated paired reads of 100 bp length (with a 400 bp fragment
size) and 400 bp unpaired reads from the E. coli genome and human
chromosome 20, respectively. All reads were simulated as error-free
and at 50× base coverage. We used Velvet 0.7.31 with a k-mer size of
31 to assemble all four data sets.

Table 3 shows the contig sizes for each assembly. The assemblies
using the 100 bp paired reads yield far larger contigs as compared to
the 400 bp single read assemblies. This is in part due to the way a de
Bruijn graph assembler such as Velvet works: the reads are split into
smaller pieces, the k-mers. In this experiment, we used a k-mer size
of 31 which is the maximum for Velvet 0.7.31. Therefore we compared
in principle k-mers of length 31 with and without pairing information.
The strong impact of read pairs as opposed to single-ended reads is
evident.

To further explore the advantage of paired-end reads, we performed
an assembly of the 100 bp paired reads in which we ignored the read
pairing information. This means that Velvet treats the reads essentially
as 100 bp single reads. Table 4 shows that the assembly quality de-
creases strongly when not using paired-ends. The 100 bp single-read
contig sizes match surprisingly well the 400 bp assembly of both E.coli
and chromosome 20 (Table 3). This illustrates the critical importance of
read pairs for obtaining high-quality assemblies.

There are newer versions of Velvet which support, in theory, k-mers
of unlimited size. In practice, the maximum k-mer size is restricted by
the available RAM since longer k-mers need to be stored in a different
data structure with higher memory requirements. Furthermore, for real
data sets, sequencing errors and base coverage limit

the maximum k-mer size as well. In the next experiment, we repeated
the 400 bp assemblies with the most recent version of Velvet, 0.7.55,
and a k-mer size of 119 (Velvet allows only odd k-mer sizes). The k-
mer size increased significantly the memory footprint and the RAM us-
age peaked at ~80 GB for the assembly of the Human chromosome.
Even more RAM will be required for real (non-perfect) data and this is
why k-mers of this size or larger will be of limited practical use.

Table 5 shows the results of this experiment. The N50 of resulting
assemblies are still smaller than the ones obtained with 100 bp paired
reads (Table 3) but are of the same order of magnitude.

These experiments show that 400 bp reads, even at high coverages,
do not provide an advantage over shorter paired reads even for Hu-
man chromosomes. Longer k-mers in a de Bruijn graph assembly
increase the contigs obtained from 400 bp reads but in practice there
is a limit on the maximum k-mer size that can be employed due to
memory requirements and sequencing errors.

 Table 3: Effect of Read Length

Sample N50 contig
size

Largest
contig

Genomre
coverage

E. coli, 100 bp pe 132,786 bp 326,886 bp 99.87 %

E. coli, 400 bp sr 22,902 bp 127,976 bp 99.87 %

Chr. 20, 100 bp pe 70,744 bp 484,312 bp 92.69 %

Chr. 20, 400 bp sr 2,319 bp 22,823 bp 92.65 %

age. We expect similar results for genomes with sizes, base composi-
tions, and repeat contents similar to E. coli. In principle, it is possible to
obtain several good assemblies from a single GA lane using multiplex-
ing to sequence several bacterial samples.

In general, the coverage threshold above which no improvement
in N50 is possible depends on the size and repeat content of the
genome to be sequenced. Still, even for larger genomes, it is expected
that after a certain coverage is reached, adding more short-insert
reads will not improve the assembly.

Read Length
The Genome Analyzer can generate paired reads with a length of
100 bp and more. There are, however, alternate technologies such as
pyrosequencing that produce longer unpaired reads. In this experi-
ment, we investigate the influence of read length on an assembly.

Chaisson et al.12 used simulations to show that reads with more than
36 bp and 60 bp do not improve assemblies of E. coli and S. cerevi-
siae, respectively. They restricted their experiment to paired reads and
the two abovementioned organsisms with relatively simple genomes.

 Table 4: Effect of Pairing Reads

Sample

(100 bp reads)

N50 contig
size

Largest
contig

Genome
coverage

E. coli, paired-end 132,786 bp 326,886 bp 99.87 %

E. coli, single read 23,326 bp 127,976 bp 99.87 %

Chr. 20, paired-end 70,744 bp 484,312 bp 92.69 %

Chr. 20, single read 2,320 bp 22,823 bp 92.43 %

 Table 2: Effect of Coverage on Assembly
 Quality

Coverage N50 contig
size

Largest
contig

Genome

coverage

320× 95,313 bp 215,645 bp 99.47%

160× 95,368 bp 209,234 bp 99.72%

50× 97,333 bp 223,793 bp 99.72%

21× 35,828 bp 119,071 bp 99.38%

 Technical Note: Sequencing

One might argue that instead of de Bruijn graph methods, one should
use traditional overlap-layout-consensus assemblers for 400 bp reads.
But, in contrast to Genome Analyzer reads, there are only few publicly
available tools that support long pyrosequencing reads and their char-
acteristic sequencing errors.

Long-Insert Libraries
Even relatively simple genomes such as E. coli contain a significant
number of repeats. The largest exact or near exact repeat in E. coli is
about 5.4 kb. An assembly with only short inserts will result in a set of
contigs with gaps at each repeat that are longer than the insert sizes.

that there is a trade-off between the mean insert size and the variance
of the insert size: libraries with larger mean insert size usually have a
larger variance. This might hamper the scaffolding step in an assembly
algorithm. For large-scale assemblies, a mixture of different long-insert
libraries will give the best result.

Data Quality
Filtering read data (i.e. removing low-quality reads) can improve the
assembly. We recommend removing reads that do not pass the GA
analysis software Failed_Chastity filter before attempting to assemble
the sequence. The chastity of a base call is the ratio of the intensity
of the greatest signal divided by the sum of the two greatest signals.
Reads do not pass the quality filter if there are two or more base calls
with chastity of less than 0.6 in the first 25 cycles. These reads have
an “N” in the last column of the GA analysis software export file. You
can apply more stringent filtering criteria, but there is a trade-off be-
tween obtaining higher quality data and reducing coverage.

To illustrate the influence of filtering, we used sequencing reads of a
single GA lane from a 200 bp insert library of E. coli with 75 bp paired
reads, using Velvet 0.7.31. We applied the following sequential filtering
criteria:

•	 Turned off filtering.

•	 Removed all reads that did not pass the Failed_Chastity filter
(PF).

•	 Removed all reads that contained ambiguous characters (Ns).
Note: Some assemblers, such as ABySS, do this automatically,
while others, such as Velvet, simply replace the N with a
random nucleotide (A,C, G or T).

•	 Removed reads that did not contain at least 25 Q30 bases
among the first 35 cycles (s35). Q30 refers to the Phred score
of the base call and is defined as an error probability of 0.001.

 Table 5: Effect of Long K-Mers (K=9)

Sample N50 contig
size

Largest
contig

Genome
coverage

E. coli, 400 bp sr 132,476 bp 326,884 bp 99.25 %

Chr. 20, 400 bp sr 68,659 bp 645,179 bp 92.78 %

 Table 6: Effect of Insert Size on Assembly

Inserts Reads
(bp)

Cover-
age

N50
super-
contig

Largest
super-
contig

Genome
coverage

200 bp 2×75 50× 97 kb 223 kb 99.58%

200 bp

+ 6 kb

2×75

2×35

50×

28×

1.3 Mb 2.1 Mb 99.07%

200 bp
+10 kb

2×75

2×35

50×

28×

4.5 Mb 4.5 Mb 99.69%

 Table 7: Effect of Filtering on Assembly Quality

Filtering Read
Coverage

N50 contig
size (bp)

Largest
contig (bp)

Genome
coverage

No filtering 420× 12,083 62,228 99.37 %

Only PF 328× 95,351 209,222 99.63 %

PF + Ns
removed

320× 95,313 215,645 99.47 %

PF + Ns +
s35 removed

203x 95,338 268,040 99.58 %

If we combine the short-insert library with the 10 kb insert library, we
obtain an assembly with one single supercontig covering ~98% of
the E. coli genome. While the genome coverage as a whole does not
increase significantly, the assembly is much less fragmented and will
be more useful in, for example, analysis of structural variations.

In general, libraries with larger insert sizes will result in less fragmented
assemblies and larger contigs. The maximal insert size needed will de-
pend on the repeat structure of the organism to be sequenced. Note

To bridge these gaps, libraries with longer inserts are essential. We ad-
vise using a combination of long-insert libraries with a high-coverage
short-insert library to obtain sufficient coverage.

To examine how long inserts can improve the assembly we sequenced
E. coli with one GA lane using a 6 kb insert library and another lane
using a 10 kb insert library, thencombined these with a 200 bp insert
library and repeated our assembly. All of the de novo assemblers that
we tested have the ability to use long-insert libraries. Table 6 shows
results obtained using Velvet 0.7.31 with a variety of long-insert librar-
ies. The 6 kb inserts already help bridge most of the repeats in E. coli
if combined with the short-insert library, and result in an assembly with
an N50 of 1,303,210 bp. The two largest contigs cover a region of
3,378,195 bp, which corresponds to 70% of the E. coli genome. The
rest of the genome is contained in smaller contigs.

As can be seen from Table 7, removing reads not passing the
Failed_Chastity filter greatly improves the quality of the build. Ad-
ditional filtering steps increase the size of the largest contig, but do
not improve the overall assembly. The genome coverage is high for all
assemblies and differences between the filtered assemblies are within
the expected variability.

Other filtering methods such as a k-mer-based error correction4,9
can make sense depending on the organism and assembly algorithm
used.

Technical Note: Sequencing

make use of multiple CPUs. Forge was executed in a parallel fashion
on a cluster with 20 CPUs and 4 GB RAM per CPU. Most comput-
ing time was spent on building the scaffold and traversing the overlap
graph.

Assembly of Larger Genomes
Since ABySS uses parallelization and de Bruijn graphs, it can be used
for de novo assembly of larger genomes. The other assemblers have
limitations that become prohibitive when assembling a large genome,
such as a mammalian genome.

We tested ABySS using reads from a Yoruba male (child of the indi-
vidual published in Bentley et al.10) with the HapMap reference number
NA18506. The data set consisted of 100 bp paired reads sampled at
30× coverage with an insert size of 600 bp. We first assembled chro-
mosomes 1 and 20, to serve as medium-sized genome test cases.
After that, we assembled the whole human genome.

Medium-Sized Genome Assemblies
We aligned all reads from the Yoruba male against the NCBI human
reference genome and used reads aligning to chromosome 1 and 20
to assemble both chromosomes. These chromosomes have a size of
247 Mb and 62 Mb respectively and thus fall into the gap in genome
size between E. coli and mammalian genomes.

After assembly, we discarded contigs with less than 100 bp to make
the results comparable to previously published data3 (Table 10).

 Table 9: Comparison of Supercontig/Scaffold
 Assembly

Software

package

N50 Largest
scaffold

Genome
coverage

Velvet 0.7.31, k=31 97,333 bp 223,793 bp 99.72%

Forge 1.0,k=15 82,595 bp 482,322 bp 99.4%

SOAPdenovo 1.0 95,472 bp 223,876 bp 98.61%

Error Rate
We created a series of simulated data sets based on the E. coli ge-
nome to investigate the influence of sequencing errors. We simulated
different error rates in sequencing reads, and used Velvet 0.7.31 to
perform an assembly at 150× coverage (Figure 5).

The results for an error rate less than ~4% match the contig sizes we
obtained using real E. coli reads. There is a sharp drop in contig sizes
as soon as the error rates surpass 4%. This error rate is well above the
average error rate for a good GA run, indicating that sequencing error
does not usually limit the assembly quality (as shown in Table 2).

Testing Assembelers
Comparison of Assemblers on a Bacterial Genome

We compared currently available assemblers for Illumina reads using
a single GA lane from 200 bp insert library of E. coli with 75 bp paired
reads, down-sampled to 50× coverage.

It is difficult to compare the results of assemblers directly, since they
produce different outputs: ABySS computes only contigs without gaps
whereas Velvet, Forge, and SOAPdenovo compute sets of contigs,
“sequence-connected-supercontigs (SCSS)” in Velvet, supercontigs in
Forge and SOAPdenovo. To make the results comparable, we gener-
ated two tables.

Table 8 shows a comparison based on the contig sizes, where
supercontigs/scaffolds for Velvet, Forge, and SOAPdenovo were split
whenever at least one gap character (‘N’) occurs. Table 9 shows a
comparison based on the supercontig/scaffold sizes. Since ABySS
does not generate supercontigs, it is omitted from this table.

Comparing supercontig/scaffolds, Velvet produced the largest N50
statistic in the E. coli assembly using short inserts, but Forge and
SOAPdenovo computed assemblies of similar quality and contig size
distribution (Table 9). In fact, Forge produced a much longer scaffold,
but took ~50 times longer than Velvet to run (~30 minutes for Velvet
versus ~24 hours for Forge). We executed Velvet on a machine with
60 GB of RAM and 16 CPUs with 2.4 GHz. Note that Velvet does not

 Table 10: Assembly of Human Chromosome 1
(K=55) and Chromosome 20 (K=62) by Abyss 1.0.8

Chromo-
some

Size (bp) N50 contig
size (bp)

Largest
contig
(bp)

Bases in
contigs
(Mb)

Chr. 20 62,435,965 4,743 48,538 64

Chr. 1 247,199,719 2,879 32,516 197

 Table 8: Comparison of Contig Assembly

Software

package

N50 Largest
contig

Genome
coverage

Velvet 0.7.31, k=31 61,802 bp 115,666 bp 99.72%

ABySS 1.0.8, k=42 45,171 bp 140,706 bp 99.64%

Forge 1.0, k=15 70,447 bp 444,471 bp 99.4%

SOAPdenovo 1.0 3,026 bp 20,258 bp 99.51%

ABySS assembles both data sets into reasonably sized contigs.
Contigs of this size can be useful for characterizing Single Nucleotide
Polymorphisms (SNPs) and small to medium-sized structural variants.
Further improvements in contig size can be obtained by adding long-
insert libraries.

Whole Human Genome Assembly
We also performed a prototype assembly of the whole genome. The
first stage of assembly, which was performed without the read pairing
information, took ~20 hours on a cluster with 150 cores. Joining and
error correcting the resulting contigs required an additional three days.

Due to the high repeat content and the small insert size, this assembly
is highly fragmented. The largest contig had a size of 27,534 bp, but
the N50 is much lower than the N50 that we achieved for chromo-
some 1. Whole-genome assembly of a mammalian genome with
ABySS may therefore provide a starting point, but requires significant
hands-on assembly afterwards. However, we expect that assemblies
of whole mammalian genomes will improve with further improvements
in algorithms and the application of long-insert libraries.

 Technical Note: Sequencing

Recommendations
The assembly of bacterial genomes using current Illumina sequence
reads can be performed with a number of publicly available assem-
blers, such as Velvet, Forge, and SOAPdenovo. With a combination of
short- and long-insert reads and sufficient coverage, it is possible to
assemble the E. coli genome in one supercontig covering almost the
entire genome. We anticipate that comparable results can be obtained
for other bacterial genomes with a repeat content and a base compo-
sition similar to E. coli. Larger genomes can be assembled success-
fully if coverage is large enough and long-insert libraries are used.

Parameter Optimization
When performing a whole genome sequencing project, take care to
optimize the following parameters:

•	 Size of k-mers: The size of k and thus the size of k-mers from
which the graph is built is crucial for all de Bruijn graph based
assemblers. The right choice for k depends on coverage, read
length, and error rates and is hard to determine in advance.
Anecdotal recommendations indicate that the size of k should
not be lower than half of the read length. If time allows, we
recommend performing several assemblies over a small range
of k and choosing the one that yields the best assembly for the
desired application.

•	 Quality filtering: Remove low-quality reads that fail the Failed_
Chastity filter. These reads carry an “N” in the last column of
the GA analysis software export file. Additional filtering steps
do not necessarily improve the overall assembly.

•	 Insert size: In general, libraries with larger insert sizes will result
in less fragmented assemblies and larger contigs, depending
on the repeats of the organism. We also recommend
combining long-insert libraries with a high-coverage short-
insert library to obtain sufficient coverage.

•	 Coverage: The coverage threshold above which no
improvement in N50 is possible will depend on the size and
base composition of the genome to be sequenced. We have
observed few improvements in the assembly at sequencing
deeper than 50×.

•	 Sequencing error rate: The results for an error rate less than
4% are acceptable. There is a sharp drop in contig sizes as
soon as the error rate surpasses 4%. Optimally, to create
the largest supercontigs, the insert sizes should be large
enough to span the largest repeats. If feasible, we recommend
using simulations to obtain a reasonable error rate. If not,
we recommend at least 30–40× coverage of good-quality
sequence data.

•	 Aligning the contigs back to the reference genome should be
done to check the quality of the resulting assembly and search
for structural variants, if applicable. Recommended tools
include BLAST6, MUMmer7, or SSAHA8.

•	 Aligning reads to the assembled contigs will help to determine
insert sizes which differ from the expected one and to detect
misassemblies.

Assemblers
Velvet stands out as the algorithm producing the largest N50 statistic
in the E. coli assembly using short inserts. Forge and SOAPdenovo
computed assemblies of similar quality and contig size distribution.
While by far the fastest assembly algorithm for small genomes, Velvet
requires a lot of RAM for larger genomes.

To give an example, we used Velvet to assemble the human chromo-
some 20 (~ 64.5 Mb) from high-quality reads on a machine with 64
GB RAM. At its peak memory usage, Velvet used most of the available
RAM. Assemblies of larger genomes or assemblies with error-prone
reads will require significantly more memory. Velvet is easy to use and
has a well-written manual. Velvet requires some Linux skills and knowl-
edge of the command line, just like the other assemblers presented
here. Overall, Velvet is the software of choice for small to medium-
sized bacterial genomes and can be executed using an affordable
compute setup.

Forge’s limitation is its speed: the size of the contigs and scaffolds
is comparable to Velvet, but the assembly process takes an order of
magnitude longer. Due to its distributed approach, it can be executed
on a cluster and has the potential to assemble large genomes. Nev-
ertheless, this ability is constrained by its use of a traditional overlap
graph.

ABySS seems to be the only algorithm that is currently able to com-
pute an assembly of mammalian-sized genomes from short reads.
This is due to its implementation of a distributed de Bruijn graph.
But the obtained assembly is highly fragmented, in part because the
tested version of ABySS does not perform scaffolding. We expect this
to change with the further improvement of assembly algorithms and
the application of long-insert size libraries for mammalian genomes.

For E. Coli, SOAPdenovo created assemblies of similar quality to
Forge and does not have the large memory footprint of Velvet. The
Beijing Genomics Institute has created and used a newer version of
SOAPdenovo (publication pending) to assemble the Panda11 and
human genomes sequenced as part of the 1000 Genomes Project.
When available, the new version of SOAPdenovo will provide research-
ers with multiple software options to assemble mammalian-sized
genomes from next generation sequencing data.

Conclusion
One can perform high quality de novo sequence assembly using
Illumina Genome Analyzer reads and publicly available short-read
assemblers. In many instances, existing computer resources in the
laboratory are enough to perform de novo assemblies. The recom-
mendations provided in this technical note can be used to perform
genomic assemblies efficiently.

Illumina, Inc. • 9885 Towne Centre Drive, San Diego, CA 92121 USA • 1.800.809.4566 toll-free • 1.858.202.4566 tel • techsupport@illumina.com • illumina.com

FOR RESEARCH USE ONLy

© 2010 Illumina, Inc. All rights reserved.
Illumina, illuminaDx, Solexa, Making Sense Out of Life, Oligator, Sentrix, GoldenGate, GoldenGate Indexing, DASL, BeadArray,
Array of Arrays, Infinium, BeadXpress, VeraCode, IntelliHyb, iSelect, CSPro, GenomeStudio, Genetic Energy, HiSeq, and HiScan are
registered trademarks or trademarks of Illumina, Inc. All other brands and names contained herein are the property of their respective
owners. Pub. No. 770-2009-022 Current as of 13 October 2009

Technical Note: Sequencing

References
1. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read as-

sembly using de Bruijn graphs. Genome Research 18: 821–829.

2. BGI (Beijing Genome Institute). SOAP: Short Oligonucleotide Analysis Pack-

age. http://soap.genomics.org.cn.

3. Simpson JT, Wong K, Jackman SD, Schein JE, et al. (2009) ABySS: A

parallel assembler for short read sequence data. Genome Research, 19:

1117-23.

4. Butler J, MacCallum I, Kleber M, Shlyakhter IA et al. (2008) ALLPATHS: de

novo assembly of whole-genome shotgun microreads. Genome Research,

18: 810-820.

5. Platt D, Evers DJ Forge (2009) Unpublished Manuscript. See

http://forge.sourceforge.net/

6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local align-

ment search tool. J Mol Biol 215: 403-10.

7. Kurtz S, Phillippy A, Delcher AL, Smoot M et al. (2004) Versatile and open

software for comparing large genomes. Genome Biology 5:R12.

8. Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large

DNA databases. Genome Research 11: 1725-9.

9. Pevzner PA, Tang H, and Waterman MS (2001) An Eulerian path approach

to DNA fragment assembly. PNAS 98, 9748-53.

10. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP et al. (2008)

Accurate whole human genome sequencing using reversible terminator

chemistry. Nature 456: 53-59.

11. Application note available at:

http://www.illumina.com/downloads/BGIdenovo_AppNote.pdf

12. Chaisson MJ, Brinza D, Pevzner PA (2008) De novo fragment assembly with

short mate-paired reads: Does the read length matter? Genome Research.

19:336-46

Additional Information
Visit our website or contact us at the address below to learn more
about Illumina sequencing products and software solutions.

