
Technical Note: Sequencing

Introduction
Recent technological advances have dramatically improved next-gen-
eration sequencing throughput and quality. Illumina’s Genome Analyzer 
(GA) produces a significant larger volume of sequence data than tradi-
tional Sanger sequencing. Compared to just a few years ago, it is now 
much easier and cheaper to sequence entire genomes, and a wide 
variety of species are being studied using these advanced genetic 
analysis tools. Because of the rapid improvements in cost and quality 
of sequencing data, de novo sequencing and assembly is possible not 
only in large sequencing centers, but also in small labs.

In parallel with the technological improvements that have increased 
the throughput of the next-generation short-read sequencers, many 
algorithmic advances have been made in de novo sequence assem-
blers for short-read data. High quality de novo assembly using Illumina 
Genome Analyzer reads is possible today using many of these assem-
blers. Here we summarize the results of several de novo sequencing 
experiments using E. coli and human data. 

Assembling a genome using the reads generated by the Genome 
Analyzer requires a different approach than the overlap methods that 
were developed for the long reads produced by Sanger sequencing. 
For example, the software packages that assemble the reads into a 
genome need to be able to process a large number of short reads. A 
critical step during assembly is the optimization of parameters such 
as coverage, paired-end insert length, and data quality filtering. After 
proper optimization, we show that, for Escherichia coli, we are able to 
achieve a genome coverage of up to 99.4% (N50 = 82,595 bp; largest 
scaffold = 482,333 bp) and 99.72% (N50 = 97,333 bp; largest scaffold 
= 233,793 bp) with two assemblers tested. While larger genomes re-
quire large amounts of memory, the latter assembly was replicated on 
a 64 bit Linux desktop with a 2 Ghz processor and 4 Gb of RAM in 24 
minutes. Additionally, by randomly removing sequencing reads such 
that the sequence data covered the genome at 50× depth, we were 
able to replicate the numbers above on a 32 bit Windows desktop 
with 3 Gb of RAM in 15 minutes processing time, using the Linux-
like environment Cygwin. This demonstrates that in some instances, 
de novo assembly can be performed with minimal computational 
resources.

In this technical note, we provide guidance for designing studies and 
filtering data to produce high quality assemblies (see Figure 1 for a  
de novo assembly workflow). In addition, we test various publicly avail-
able packages in assembling a bacterial and a human genome.

Assemblers
There are two basic approaches in algorithms for short-read assem-
blers: overlap graphs and de Bruijn graphs. These approaches are 
described below.

Overlap Graphs
Most established assemblers that were developed for Sanger reads 
follow the overlap-layout-consensus paradigm. They compute all 
pair-wise overlaps between the reads and capture this information in 
a graph. Each node in the graph corresponds to a read, and an edge 
denotes an overlap between two reads (Figure 2). The overlap graph 
is used to compute a layout of reads and a consensus sequence of 
contigs. This method works best when there is a limited number of 
reads with significant overlap.

       Figure 1: De Novo Assembly Workflow
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De Novo Assembly Using Illumina Reads
High quality de novo sequence assembly using Illumina Genome Analyzer reads is possible 
today using publicly available short-read assemblers. Here we summarize the results of several 
de novo assembly experiments. We show that for E. coli, genome coverage of as high as 99.4% 
(N50 = 82,595 bp) and 99.72% (N50 = 97,333 bp) can be achieved with two of the assemblers 
tested and short inserts. The latter assembly job completed in 15 minutes on a 32 bit Windows 
desktop with 3 GB of RAM, indicating that in some instances, de novo assemblies can easily be 
performed with existing computer resources in the laboratory.
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Some assemblers for next-generation sequence data use overlap 
graphs, but this traditional approach is computationally intensive: even 
a de novo assembly of simple organisms needs millions of reads, mak-
ing the overlap graph extremely large.

De Bruijn Graphs
Because overlap graphs do not scale well with increasing numbers of 
reads, most assemblers for next-generation sequencing use de Bruijn 
graphs. De Bruijn graphs reduce the computational effort by break-
ing reads into smaller sequences of DNA, called k-mers, where the 
parameter k denotes the length in bases of these sequences. The de 
Bruijn graph captures overlaps of length k-1 between these k-mers 
and not between the actual reads (Figure 3).

is best found by testing a small range of values. We provide more 
details in the “Recommendations” section. 

Another attractive property of de Bruijn graphs is that repeats in the 
genome can be collapsed in the graph and do not lead to many 
spurious overlaps, although this does not mean that they can be 
more easily bridged or resolved. The maximum size of the de Bruijn 
graph is independent of sequence depth with an upper bound of 4k. 
Depending upon the genome being sequenced and the value of k, 
the de Bruijn graph may not reach the theoretical maximum, but in the 
presence of sequencing errors or biological variation, the memory foot-
print of the graph increases. Nevertheless, it has been our experience 
that reasonable error rates do not significantly increase the memory 
requirement.

A Sampling of Assemblers for Short Reads
The software package Velvet1 was among the first assemblers for 
short reads and is now widely used. It implements an approach based 
on de Bruijn graphs, uses information from read pairs, and implements 
various error correction steps after building the graph. Velvet has suc-
cessfully been used to assemble bacterial genomes1.

SOAPdenovo2 also implements a de Bruijn graph approach. In con-
trast to Velvet, error correction is performed before the actual graph is 
built.

The assemblers ABySS3 also uses the de Bruijn graph method. Its ad-
vantage is that it can be run in a parallel environment and thus has the 
potential to assemble much larger genomes. For example, Simpson 
et al. demonstrate the assembly of a human genome using ABySS3. 
SOAPdenovo also implements a parallel assembly algorithm based on 
de Bruijn graphs but details of this tool are not yet published.

Forge5 implements an overlap-layout-consensus approach with 
various changes to accommodate Illumina reads. It distributes the 
computational and memory consumption on various nodes and has 
therefore the potential to assemble much larger genomes, despite not 
being a de Bruijn graph method.

An overview of the tested assemblers is given in Table 1.

       Figure 2: Overlap Graph of Five Reads
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Colored nucleotides indicate overlaps between reads.

       Figure 3: De Bruijn Graph for Read with K=3
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The length of overlaps is k-1=2. Gray arrows indicate where all the k-mers 
derived from the one read are placed in the graph. Blue arrows indicate the 
order of the k-mers and their overlaps.

By reducing the entire data set down to k-mer overlaps the de Bruijn 
graph reduces the high redundancy in short-read data sets. The maxi-
mum efficient k-mer size for a particular assembly is determined by the 
read length as well as the error rate. The value of the parameter k has 
significant influence on the quality of the assembly. Estimates of good 
values can be made before the assembly, but often the optimal value 

       Note

The analysis presented here represents a snapshot in time of a subset 
of the currently available assemblers. For example, much of our analysis 
was performed using Velvet version 0.7.31 but several releases have oc-
curred since we downloaded and tested this software. Assemblers evolve 
constantly and we anticipate that new methods will be developed to allow 
mammalian genomes to be more rapidly and efficiently assembled. 

Comparing Assembly Outcomes
The outcome of an assembly is a set of contigs. A contig is a con-
tiguous assembled piece of DNA sequence. Some assemblers also 
compute scaffolds, which is a set of contigs for which the relative 
orientation and distance is known. An alternative to scaffolds are 
supercontigs: contigs in which gaps are allowed.Gaps are usually 
denoted by the letter ‘N’ in the DNA sequence.
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The following metrics are often used to compare the quality of as-
semblies:

•	 N50—The contig length such that 50% of the de novo 
assembled genome lies in blocks of this size or larger. N80 or 
N60 are also used.

•	 Genome coverage—The percentage of bases in the reference 
covered by the assembled contigs. This can only be computed 
if a reference genome exists, and the way the assembled 
contigs are mapped to the reference can have a significant 
influence on this parameter. Popular tools for mapping include 
BLAST6, MUMmer7, and SSAHA8. Contigs aligning with large 
internal gaps or low confidence indicate either structural 
variants or misassemblies, and should be carefully monitored. 
If paired reads are available, mapping them back onto the 
contigs is another source of information. Large deviations in 
the mapping distances or read pairs in which only one read 
maps against the contig hint at misassemblies rather than 
structural variants.

•	 Maximum/median/average contig size—Usually calculated 
after removing the smallest contigs (for example removing all 
contigs less than 150 bp in length).

The contig sizes and their distribution are convenient and straight-
forward quality metrics but they do not contain all of the information 
needed to judge quality. For example, an assembly comprising several 
medium-sized contigs can be high-quality if these contigs cover the 
inter-repeat regions of the genome with high accuracy. On the other 
hand, an assembly consisting of one large contig with roughly the 
length of the genome being assembled is useless if the contig is incor-
rectly assembled.

Sequencing Parameters
The most important sequencing parameters are discussed in this 
section. We also provide examples of assemblies of E. coli data using 
Velvet to illustrate the influence of the parameters on the quality of the 
assembly. We performed several assemblies with Velvet, using different 
values of k, and determined that Velvet works best with k=31 for the 
E. coli data set. Note that higher values of k may perform better but 
Velvet 0.7.31 only supports values up to 31. This value of k was used 
throughout the work described here.

       Figure 4: Effect of Coverage
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Effect of coverage on N50 contig size and memory requirements in an E. 
coli de novo assembly.

Coverage
A high-quality de novo assembly cannot be achieved unless there is a 
sufficient number of error-free reads covering the entire genome. To 

achieve this and thus produce a high-quality assembly, a high depth of 
coverage is essential. The coverage needed will depend on the organ-
ism, its genome size, and the repeat content. To give an example, the 
Beijing Genomics Institute sequenced the Giant Panda genome using 
75 bp reads at a coverage of 50×11. 

To evaluate the influence of coverage on a bacterial assembly, we cre-
ated simulated data sets based on the E. coli genome using error-free 
reads. We simulated 75 bp paired-end data sets with a 200 bp insert 
size assembled using Velvet 0.7.31 (Figure 4) and different coverages.

As can be seen from Figure 4, a coverage of more than 50× does 
not yield a significant improvement in terms of the contig sizes. Since 
Velvet’s memory usage increases with sequencing depth, higher cov-

       Table 1: Overview of Tested Assemblers

Algorithm Description Strength Genomes Assembled

Velvet De Bruijn graph based 
Error corrections after graph is built

Fast (~30 mins) 
Easy to use 
Larger supercontig N50

Bacterial (Ref. 1; this techni-
cal note)

SOAPdenovo De Bruijn graph based 
Error correction before graph is built

Easy to use 
Multi-threaded mode

Panda, Bacterial (Ref. 11; 
this technical note)

ABySS De Bruijn graph based 
Can be run in parallel 
Distributed memory model (efficient)

Easy to use 
Largest contigs/scaffolds 
Best suited for large genomes

Human (Ref. 3; this techni-
cal note)

Forge Overlap-layout-consensus method 
Modifications to accommodate Illumina reads

Largest contigs/supercontigs 
Good “long read” assembler

Bacterial (this technical note)
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erage can require a significantly larger amount of memory with little or 
no improvement in assembly quality.

To further examine whether 50× coverage is sufficient, we used real 
sequencing data: a single GA lane from a 200 bp insert library of E. 
coli with 75 bp paired reads. After removing reads that did not pass 
the GA analysis software Failed_Chastity filter (described later) or 
containing Ns, the coverage is 320×. From this starting data, we ran-
domly removed reads to generate samples with lower coverage, and 
assembled using Velvet 0.7.31.

Table 2 shows that the contig sizes drop as expected when the cover-
age drops under 50×, but contig sizes remain stable at higher cover-

We simulated paired reads of 100 bp length (with a 400 bp fragment 
size) and 400 bp unpaired reads from the E. coli genome and human 
chromosome 20, respectively. All reads were simulated as error-free 
and at 50× base coverage. We used Velvet 0.7.31 with a k-mer size of 
31 to assemble all four data sets.

Table 3 shows the contig sizes for each assembly. The assemblies 
using the 100 bp paired reads yield far larger contigs as compared to 
the 400 bp single read assemblies. This is in part due to the way a de 
Bruijn graph assembler such as Velvet works: the reads are split into 
smaller pieces, the k-mers. In this experiment, we used a k-mer size 
of 31 which is the maximum for Velvet 0.7.31. Therefore we compared 
in principle k-mers of length 31 with and without pairing information. 
The strong impact of read pairs as opposed to single-ended reads is 
evident.

To further explore the advantage of paired-end reads, we performed 
an assembly of the 100 bp paired reads in which we ignored the read 
pairing information. This means that Velvet treats the reads essentially 
as 100 bp single reads. Table 4 shows that the assembly quality de-
creases strongly when not using paired-ends. The 100 bp single-read 
contig sizes match surprisingly well the 400 bp assembly of both E.coli 
and chromosome 20 (Table 3). This illustrates the critical importance of 
read pairs for obtaining high-quality assemblies. 

There are newer versions of Velvet which support, in theory, k-mers 
of unlimited size. In practice, the maximum k-mer size is restricted by 
the available RAM since longer k-mers need to be stored in a different 
data structure with higher memory requirements. Furthermore, for real 
data sets, sequencing errors and base coverage limit 

the maximum k-mer size as well. In the next experiment, we repeated 
the 400 bp assemblies with the most recent version of Velvet, 0.7.55, 
and a k-mer size of 119 (Velvet allows only odd k-mer sizes). The k-
mer size increased significantly the memory footprint and the RAM us-
age peaked at ~80 GB for the assembly of the Human chromosome. 
Even more RAM will be required for real (non-perfect) data and this is 
why k-mers of this size or larger will be of limited practical use.

Table 5 shows the results of this experiment. The N50 of resulting 
assemblies are still smaller than the ones obtained with 100 bp paired 
reads (Table 3) but are of the same order of magnitude.

These experiments show that 400 bp reads, even at high coverages, 
do not provide an advantage over shorter paired reads even for Hu-
man chromosomes. Longer k-mers in a de Bruijn graph assembly 
increase the contigs obtained from 400 bp reads but in practice there 
is a limit on the maximum k-mer size that can be employed due to 
memory requirements and sequencing errors.

       Table 3: Effect of Read Length

Sample N50 contig 
size 

Largest 
contig 

Genomre 
coverage

E. coli, 100 bp pe 132,786 bp 326,886 bp 99.87 %

E. coli, 400 bp sr 22,902 bp 127,976 bp 99.87 %

Chr. 20, 100 bp pe 70,744 bp 484,312 bp 92.69 %

Chr. 20, 400 bp sr 2,319 bp 22,823 bp 92.65 %

age. We expect similar results for genomes with sizes, base composi-
tions, and repeat contents similar to E. coli. In principle, it is possible to 
obtain several good assemblies from a single GA lane using multiplex-
ing to sequence several bacterial samples.

In general, the coverage threshold above which no improvement 
in N50 is possible depends on the size and repeat content of the 
genome to be sequenced. Still, even for larger genomes, it is expected 
that after a certain coverage is reached, adding more short-insert 
reads will not improve the assembly.

Read Length
The Genome Analyzer can generate paired reads with a length of 
100 bp and more. There are, however, alternate technologies such as 
pyrosequencing that produce longer unpaired reads. In this experi-
ment, we investigate the influence of read length on an assembly.

Chaisson et al.12 used simulations to show that reads with more than 
36 bp and 60 bp do not improve assemblies of E. coli and S. cerevi-
siae, respectively. They restricted their experiment to paired reads and 
the two abovementioned organsisms with relatively simple genomes.

       Table 4: Effect of Pairing Reads

Sample

(100 bp reads)

N50 contig 
size 

Largest 
contig 

Genome 
coverage

E. coli, paired-end 132,786 bp 326,886 bp 99.87 %

E. coli, single read 23,326 bp 127,976 bp 99.87 %

Chr. 20, paired-end 70,744 bp 484,312 bp 92.69 %

Chr. 20, single read 2,320 bp 22,823 bp 92.43 %

       Table 2: Effect of Coverage on Assembly 
       Quality

Coverage N50 contig 
size 

Largest 
contig 

Genome

coverage

320× 95,313 bp 215,645 bp 99.47%

160× 95,368 bp 209,234 bp 99.72%

50× 97,333 bp 223,793 bp 99.72%

21× 35,828 bp 119,071 bp 99.38%
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One might argue that instead of de Bruijn graph methods, one should 
use traditional overlap-layout-consensus assemblers for 400 bp reads. 
But, in contrast to Genome Analyzer reads, there are only few publicly 
available tools that support long pyrosequencing reads and their char-
acteristic sequencing errors.

Long-Insert Libraries
Even relatively simple genomes such as E. coli contain a significant 
number of repeats. The largest exact or near exact repeat in E. coli is 
about 5.4 kb. An assembly with only short inserts will result in a set of 
contigs with gaps at each repeat that are longer than the insert sizes. 

that there is a trade-off between the mean insert size and the variance 
of the insert size: libraries with larger mean insert size usually have a 
larger variance. This might hamper the scaffolding step in an assembly 
algorithm. For large-scale assemblies, a mixture of different long-insert 
libraries will give the best result. 

Data Quality
Filtering read data (i.e. removing low-quality reads) can improve the 
assembly. We recommend removing reads that do not pass the GA 
analysis software Failed_Chastity filter before attempting to assemble 
the sequence. The chastity of a base call is the ratio of the intensity 
of the greatest signal divided by the sum of the two greatest signals. 
Reads do not pass the quality filter if there are two or more base calls 
with chastity of less than 0.6 in the first 25 cycles. These reads have 
an “N” in the last column of the GA analysis software export file. You 
can apply more stringent filtering criteria, but there is a trade-off be-
tween obtaining higher quality data and reducing coverage.

To illustrate the influence of filtering, we used sequencing reads of a 
single GA lane from a 200 bp insert library of E. coli with 75 bp paired 
reads, using Velvet 0.7.31. We applied the following sequential filtering 
criteria:

•	 Turned off filtering.

•	 Removed all reads that did not pass the Failed_Chastity filter 
(PF).

•	 Removed all reads that contained ambiguous characters (Ns). 
Note: Some assemblers, such as ABySS, do this automatically, 
while others, such as Velvet, simply replace the N with a 
random nucleotide (A,C, G or T).

•	 Removed reads that did not contain at least 25 Q30 bases 
among the first 35 cycles (s35). Q30 refers to the Phred score 
of the base call and is defined as an error probability of 0.001.

       Table 5: Effect of Long K-Mers (K=9)

Sample N50 contig 
size 

Largest 
contig 

Genome 
coverage

E. coli, 400 bp sr 132,476 bp 326,884 bp 99.25 %

Chr. 20, 400 bp sr 68,659 bp 645,179 bp 92.78 %

       Table 6: Effect of Insert Size on Assembly

Inserts Reads 
(bp)

Cover-
age

N50 
super-
contig 

Largest 
super-
contig

Genome 
coverage

200 bp 2×75 50× 97 kb 223 kb 99.58%

200 bp

+ 6 kb

2×75

2×35

50×

28×

1.3 Mb 2.1 Mb 99.07%

200 bp 
+10 kb

2×75

2×35

50×

28×

4.5 Mb 4.5 Mb 99.69%

       Table 7: Effect of Filtering on Assembly Quality

Filtering Read 
Coverage

N50 contig 
size (bp)

Largest 
contig (bp)

Genome 
coverage

No filtering 420× 12,083 62,228 99.37 %

Only PF 328× 95,351 209,222 99.63 %

PF + Ns 
removed

320× 95,313 215,645 99.47 %

PF + Ns + 
s35 removed

203x 95,338 268,040 99.58 %

If we combine the short-insert library with the 10 kb insert library, we 
obtain an assembly with one single supercontig covering ~98% of 
the E. coli genome. While the genome coverage as a whole does not 
increase significantly, the assembly is much less fragmented and will 
be more useful in, for example, analysis of structural variations.

In general, libraries with larger insert sizes will result in less fragmented 
assemblies and larger contigs. The maximal insert size needed will de-
pend on the repeat structure of the organism to be sequenced. Note 

To bridge these gaps, libraries with longer inserts are essential. We ad-
vise using a combination of long-insert libraries with a high-coverage 
short-insert library to obtain sufficient coverage.

To examine how long inserts can improve the assembly we sequenced 
E. coli with one GA lane using a 6 kb insert library and another lane 
using a 10 kb insert library, thencombined these with a 200 bp insert 
library and repeated our assembly. All of the de novo assemblers that 
we tested have the ability to use long-insert libraries. Table 6 shows 
results obtained using Velvet 0.7.31 with a variety of long-insert librar-
ies. The 6 kb inserts already help bridge most of the repeats in E. coli 
if combined with the short-insert library, and result in an assembly with 
an N50 of 1,303,210 bp. The two largest contigs cover a region of 
3,378,195 bp, which corresponds to 70% of the E. coli genome. The 
rest of the genome is contained in smaller contigs.

As can be seen from Table 7, removing reads not passing the 
Failed_Chastity filter greatly improves the quality of the build. Ad-
ditional filtering steps increase the size of the largest contig, but do 
not improve the overall assembly. The genome coverage is high for all 
assemblies and differences between the filtered assemblies are within 
the expected variability.

Other filtering methods such as a k-mer-based error correction4,9 
can make sense depending on the organism and assembly algorithm 
used. 
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make use of multiple CPUs. Forge was executed in a parallel fashion 
on a cluster with 20 CPUs and 4 GB RAM per CPU. Most comput-
ing time was spent on building the scaffold and traversing the overlap 
graph.

Assembly of Larger Genomes
Since ABySS uses parallelization and de Bruijn graphs, it can be used 
for de novo assembly of larger genomes. The other assemblers have 
limitations that become prohibitive when assembling a large genome, 
such as a mammalian genome. 

We tested ABySS using reads from a Yoruba male (child of the indi-
vidual published in Bentley et al.10) with the HapMap reference number 
NA18506. The data set consisted of 100 bp paired reads sampled at 
30× coverage with an insert size of 600 bp. We first assembled chro-
mosomes 1 and 20, to serve as medium-sized genome test cases. 
After that, we assembled the whole human genome.

Medium-Sized Genome Assemblies
We aligned all reads from the Yoruba male against the NCBI human 
reference genome and used reads aligning to chromosome 1 and 20 
to assemble both chromosomes. These chromosomes have a size of 
247 Mb and 62 Mb respectively and thus fall into the gap in genome 
size between E. coli and mammalian genomes.

After assembly, we discarded contigs with less than 100 bp to make 
the results comparable to previously published data3 (Table 10). 

       Table 9: Comparison of Supercontig/Scaffold  
       Assembly

Software

package

N50 Largest 
scaffold

Genome 
coverage

Velvet 0.7.31, k=31 97,333 bp 223,793 bp 99.72%

Forge 1.0,k=15 82,595 bp 482,322 bp 99.4%

SOAPdenovo 1.0 95,472 bp 223,876 bp 98.61%

Error Rate
We created a series of simulated data sets based on the E. coli ge-
nome to investigate the influence of sequencing errors. We simulated 
different error rates in sequencing reads, and used Velvet 0.7.31 to 
perform an assembly at 150× coverage (Figure 5).

The results for an error rate less than ~4% match the contig sizes we 
obtained using real E. coli reads. There is a sharp drop in contig sizes 
as soon as the error rates surpass 4%. This error rate is well above the 
average error rate for a good GA run, indicating that sequencing error 
does not usually limit the assembly quality (as shown in Table 2).

Testing Assembelers
Comparison of Assemblers on a Bacterial Genome

We compared currently available assemblers for Illumina reads using 
a single GA lane from 200 bp insert library of E. coli with 75 bp paired 
reads, down-sampled to 50× coverage.

It is difficult to compare the results of assemblers directly, since they 
produce different outputs: ABySS computes only contigs without gaps 
whereas Velvet, Forge, and SOAPdenovo compute sets of contigs, 
“sequence-connected-supercontigs (SCSS)” in Velvet, supercontigs in 
Forge and SOAPdenovo. To make the results comparable, we gener-
ated two tables.

Table 8 shows a comparison based on the contig sizes, where 
supercontigs/scaffolds for Velvet, Forge, and SOAPdenovo were split 
whenever at least one gap character (‘N’) occurs. Table 9 shows a 
comparison based on the supercontig/scaffold sizes. Since ABySS 
does not generate supercontigs, it is omitted from this table.

Comparing supercontig/scaffolds, Velvet produced the largest N50 
statistic in the E. coli assembly using short inserts, but Forge and 
SOAPdenovo computed assemblies of similar quality and contig size 
distribution (Table 9). In fact, Forge produced a much longer scaffold, 
but took ~50 times longer than Velvet to run (~30 minutes for Velvet 
versus ~24 hours for Forge). We executed Velvet on a machine with 
60 GB of RAM and 16 CPUs with 2.4 GHz. Note that Velvet does not 

       Table 10: Assembly of Human Chromosome 1 
(K=55) and Chromosome 20 (K=62) by Abyss 1.0.8

Chromo-
some

Size (bp) N50 contig 
size (bp)

Largest 
contig 
(bp)

Bases in 
contigs 
(Mb)

Chr. 20 62,435,965 4,743 48,538 64

Chr. 1 247,199,719 2,879 32,516 197

       Table 8: Comparison of Contig Assembly

Software

package

N50 Largest 
contig 

Genome 
coverage

Velvet 0.7.31, k=31 61,802 bp 115,666 bp 99.72%

ABySS 1.0.8, k=42 45,171 bp 140,706 bp 99.64%

Forge 1.0, k=15 70,447 bp 444,471 bp 99.4%

SOAPdenovo 1.0 3,026 bp 20,258 bp 99.51%

ABySS assembles both data sets into reasonably sized contigs. 
Contigs of this size can be useful for characterizing Single Nucleotide 
Polymorphisms (SNPs) and small to medium-sized structural variants. 
Further improvements in contig size can be obtained by adding long-
insert libraries.

Whole Human Genome Assembly
We also performed a prototype assembly of the whole genome. The 
first stage of assembly, which was performed without the read pairing 
information, took ~20 hours on a cluster with 150 cores. Joining and 
error correcting the resulting contigs required an additional three days.

Due to the high repeat content and the small insert size, this assembly 
is highly fragmented. The largest contig had a size of 27,534 bp, but 
the N50 is much lower  than the N50 that we achieved for chromo-
some 1. Whole-genome assembly of a mammalian genome with 
ABySS may therefore provide a starting point, but requires significant 
hands-on assembly afterwards. However, we expect that assemblies 
of whole mammalian genomes will improve with further improvements 
in algorithms and the application of long-insert libraries.
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Recommendations
The assembly of bacterial genomes using current  Illumina sequence 
reads can be performed with a number of publicly available assem-
blers, such as Velvet, Forge, and SOAPdenovo. With a combination of 
short- and long-insert reads and sufficient coverage, it is possible to 
assemble the E. coli genome in one supercontig covering almost the 
entire genome. We anticipate that comparable results can be obtained 
for other bacterial genomes with a repeat content and a base compo-
sition similar to E. coli. Larger genomes can be assembled success-
fully if coverage is large enough and long-insert libraries are used.

Parameter Optimization
When performing a whole genome sequencing project, take care to 
optimize the following parameters:

•	 Size of k-mers: The size of k and thus the size of k-mers from 
which the graph is built is crucial for all de Bruijn graph based 
assemblers. The right choice for k depends on coverage, read 
length, and error rates and is hard to determine in advance. 
Anecdotal recommendations indicate that the size of k should 
not be lower than half of the read length. If time allows, we 
recommend performing several assemblies over a small range 
of k and choosing the one that yields the best assembly for the 
desired application.

•	 Quality filtering: Remove low-quality reads that fail the Failed_
Chastity filter. These reads carry an “N” in the last column of 
the GA analysis software export file. Additional filtering steps 
do not necessarily improve the overall assembly.

•	 Insert size: In general, libraries with larger insert sizes will result 
in less fragmented assemblies and larger contigs, depending 
on the repeats of the organism. We also recommend 
combining long-insert libraries with a high-coverage short-
insert library to obtain sufficient coverage.

•	 Coverage: The coverage threshold above which no 
improvement in N50 is possible will depend on the size and 
base composition of the genome to be sequenced. We have 
observed few improvements in the assembly at sequencing 
deeper than 50×.

•	 Sequencing error rate: The results for an error rate less than 
4% are acceptable. There is a sharp drop in contig sizes as 
soon as the error rate surpasses 4%. Optimally, to create 
the largest supercontigs, the insert sizes should be large 
enough to span the largest repeats. If feasible, we recommend 
using simulations to obtain a reasonable error rate. If not, 
we recommend at least 30–40× coverage of good-quality 
sequence data.

•	 Aligning the contigs back to the reference genome should be 
done to check the quality of the resulting assembly and search 
for structural variants, if applicable. Recommended tools 
include BLAST6, MUMmer7, or SSAHA8.

•	 Aligning reads to the assembled contigs will help to determine 
insert sizes which differ from the expected one and to detect 
misassemblies.

Assemblers
Velvet stands out as the algorithm producing the largest N50 statistic 
in the E. coli assembly using short inserts. Forge and SOAPdenovo 
computed assemblies of similar quality and contig size distribution. 
While by far the fastest assembly algorithm for small genomes, Velvet 
requires a lot of RAM for larger genomes. 

To give an example, we used Velvet to assemble the human chromo-
some 20 (~ 64.5 Mb) from high-quality reads on a machine with 64 
GB RAM. At its peak memory usage, Velvet used most of the available 
RAM. Assemblies of larger genomes or assemblies with error-prone 
reads will require significantly more memory. Velvet is easy to use and 
has a well-written manual. Velvet requires some Linux skills and knowl-
edge of the command line, just like the other assemblers presented 
here. Overall, Velvet is the software of choice for small to medium-
sized bacterial genomes and can be executed using an affordable 
compute setup.

Forge’s limitation is its speed: the size of the contigs and scaffolds 
is comparable to Velvet, but the assembly process takes an order of 
magnitude longer. Due to its distributed approach, it can be executed 
on a cluster and has the potential to assemble large genomes. Nev-
ertheless, this ability is constrained by its use of a traditional overlap 
graph. 

ABySS seems to be the only algorithm that is currently able to com-
pute an assembly of mammalian-sized genomes from short reads. 
This is due to its implementation of a distributed de Bruijn graph. 
But the obtained assembly is highly fragmented, in part because the 
tested version of ABySS does not perform scaffolding. We expect this 
to change with the further improvement of assembly algorithms and 
the application of long-insert size libraries for mammalian genomes.

For E. Coli, SOAPdenovo created assemblies of similar quality to 
Forge and does not have the large memory footprint of Velvet. The 
Beijing Genomics Institute has created and used a newer version of 
SOAPdenovo (publication pending) to assemble the Panda11 and 
human genomes sequenced as part of the 1000 Genomes Project. 
When available, the new version of SOAPdenovo will provide research-
ers with multiple software options to assemble mammalian-sized 
genomes from next generation sequencing data.

Conclusion
One can perform high quality de novo sequence assembly using 
Illumina Genome Analyzer reads and publicly available short-read 
assemblers. In many instances, existing computer resources in the 
laboratory are enough to perform de novo assemblies. The recom-
mendations provided in this technical note can be used to perform 
genomic assemblies efficiently.



Illumina, Inc. • 9885 Towne Centre Drive, San Diego, CA 92121 USA • 1.800.809.4566 toll-free • 1.858.202.4566 tel • techsupport@illumina.com • illumina.com

FOR RESEARCH USE ONLy

© 2010 Illumina, Inc. All rights reserved.
Illumina, illuminaDx, Solexa, Making Sense Out of Life, Oligator, Sentrix, GoldenGate, GoldenGate Indexing, DASL, BeadArray,  
Array of Arrays, Infinium, BeadXpress, VeraCode, IntelliHyb, iSelect, CSPro, GenomeStudio, Genetic Energy, HiSeq, and HiScan are 
registered trademarks or trademarks of Illumina, Inc. All other brands and names contained herein are the property of their respective 
owners. Pub. No. 770-2009-022 Current as of 13 October 2009

Technical Note: Sequencing

References
1. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read as-

sembly using de Bruijn graphs. Genome Research 18: 821–829.

2. BGI (Beijing Genome Institute). SOAP: Short Oligonucleotide Analysis Pack-

age. http://soap.genomics.org.cn.

3. Simpson JT, Wong K, Jackman SD, Schein JE, et al. (2009) ABySS: A 

parallel assembler for short read sequence data. Genome Research, 19: 

1117-23.

4. Butler J, MacCallum I, Kleber M, Shlyakhter IA et al. (2008) ALLPATHS: de 

novo assembly of whole-genome shotgun microreads. Genome Research, 

18: 810-820.

5. Platt D, Evers DJ Forge (2009) Unpublished Manuscript. See  

http://forge.sourceforge.net/

6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local align-

ment search tool. J Mol Biol 215: 403-10.

7. Kurtz S, Phillippy A, Delcher AL, Smoot M et al. (2004) Versatile and open 

software for comparing large genomes. Genome Biology 5:R12.

8. Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large 

DNA databases. Genome Research 11: 1725-9.

9. Pevzner PA, Tang H, and Waterman MS (2001) An Eulerian path approach 

to DNA fragment assembly. PNAS 98, 9748-53.

10. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP et al. (2008) 

Accurate whole human genome sequencing using reversible terminator 

chemistry. Nature 456: 53-59.

11. Application note available at:  

http://www.illumina.com/downloads/BGIdenovo_AppNote.pdf

12. Chaisson MJ, Brinza D, Pevzner PA (2008) De novo fragment assembly with 

short mate-paired reads: Does the read length matter? Genome Research. 

19:336-46

Additional Information
Visit our website or contact us at the address below to learn more 
about Illumina sequencing products and software solutions.


