Databases
SQL

Anna Monreale
Universita di Pisa

anna.monreale@unipi.it

Introduction

Standard language to define and query relational DB’s, born in
1973

SQL (Structured Query Language)

— Interaction with DBMS

DDL (Data Definition Language)

— Creation of DB Schema

DCL (Data Control Language)

— Control of users authorization
DML (Data Manipulation Language)

— Instance manipulation

Create and Delete a DB

* DDL Instruction
— Defining the DB

* Syntax
— CREATE DATABASE <name>;
— DROP DATABASE <name>;

 Example
— CREATE DATABASE university;
— DROP DATABASE university;

Create and Delete a DB

e Semantics

— CREATE DATABASE

* Create a new empty database
* Need user’s authorization
* The user becomes owner of the DB

— DROP DATABASE

* Delete the DB even if is not empty!
e The user must have the authorization

Create and Delete a Table

* DDL Instruction
— CREATE TABLE
* Defines the schema of a table and create an empty istance
» Specifying attributes, domains and constraints
— DROP TABLE

* Delete a table
* Syntax
— CREATE TABLE <name> (<schema>) ;
— DROP TABLE <name>;

Example: Table Teachers

CREATE TABLE Teachers (
code CHAR(4),
name VARCHAR (20) NOT NULL,
surname VARCHAR (20) NOT NULL,
role CHAR(15),
department CHAR(10),
PRIMARY KEY (code)

) ;

DROP TABLE Teachers;

Example: Table Exams

CREATE TABLE Exams (
student integer
REFERENCES Students (StudentID)
ON DELETE cascade
ON UPDATE cascade,
course CHAR(3) REFERENCES Courses (cod),
mark 1nteger,
laud bool,
CHECK (mark>=18 and mark<=30),
CHECK (not laud or mark=30),
PRIMARY KEY (student, course)
) ;

Create and delete tables

e <schema>
— One or more attribute definitions

— Zero or more constraints definition
o Attribute Definition

— <name attribute> <type> [<constraints on col>]

— Constraints on a single attribute

 Constraint definition
— Constraints related to different attributes

Attribute Definition

<attribute name>
e |dentifier

<type>

* Numerial Types
— INTEGER,
— SMALLINT
— DECIMAL(lung,dec)
— NUMERIC
— REAL
— FLOAT
— DOUBLE PRECISION

Attribute Definition

* Single characters or strings:
— CHAR(n)
— VARCHAR(n)
— LONG VARCHAR, TEXT
* Time:
— DATE
— TIME
— TIMESTAMP

* FLAGsS, that specify if an object has a property or not
— BINARY(n), BIT(n)
— VARBINARY(n), VARBIT(n)
— LONG VARBINARY, BLOB
— BOOLEAN

Constraints

PRIMARY KEY after the type
— Only one per table
— Implies NOT NULL

PRIMARY KEY(<attribute list>) after the end of the attribute
definition
— in case it is composed of more than one attribute
UNIQUE: defines key
— After the type
UNIQUE (<attribute list>)
— in case it is composed of more than one attribute

NOT NULL

FOREIGN KEY (<lista attributes>) REFERENCES <external key>[ON
update CASCADE] [ON delete CASCADE]

CHECK (<espressione>)

Example: Primary Key

CREATE TABLE Teachers (
code CHAR(4) PRIMARY KEY,
name VARCHAR (20) NOT NULL,
surname VARCHAR (20) NOT NULL,
role CHAR(15),
department CHAR(10)
) ;

CREATE TABLE Exams (
student integer,
course CHAR(3),
mark integer,
laud bool,
CHECK (mark>=18 and mark<=30),
CHECK (not laud or mark=30),
PRIMARY KEY (student, course),
FOREIGN KEY (course) REFERENCES Courses (code),
FOREIGN KEY (student) REFERENCES Students (StudentID)
) ;

Example: UNIQUE and NOT NULL

CREATE TABLE Teachers (
code CHAR(4) PRIMARY KEY,
name VARCHAR (20) NOT NULL,
surname VARCHAR (20) NOT NULL,
role CHAR(15),

department CHAR(10), . _
UNIQUE (surname,name) This is not the same thing!
) 5 name VARCHAR (20) NOT NULL UNIQUE,

surname VARCHAR (20) NOT NULL UNIQUE,

CREATE TABLE Exams (
student integer,
course CHAR(3),
mark integer,
laud bool,
CHECK (mark>=18 and mark<=30),
CHECK (not laud or mark=30),
PRIMARY KEY (student, course),
FOREIGN KEY (course) REFERENCES Courses (code),

FOREIGN KEY (student) REFERENCES
Students (StudentID)

) ;

Example: FOREIGN KEY

CREATE TABLE Teachers (
code CHAR(4) PRIMARY KEY,
name VARCHAR (20) NOT NULL,
surname VARCHAR (20) NOT NULL,
role CHAR(15),
department CHAR(10),
UNIQUE (Surname, Name)

) ;

CREATE TABLE Exams (

student integer,

course CHAR(3),

mark integer,

laud bool,

CHECK (mark>=18 and mark<=30),

CHECK (not laud or mark=30),

PRIMARY KEY (student, course),

FOREIGN KEY (course) REFERENCES Courses (code)
ON DELETE cascade
ON UPDATE cascade,

FOREIGN KEY (student) REFERENCES Students (StudentID)
ON DELETE cascade
ON UPDATE cascade) ;

Cascade

ON UPDATE CASCADE: the new attribute values is
changed in each table

ON DELETE CASCADE: tutte le all rows referring
that value are deleted

DEFAULT: no update and cancellation is allowed if
there are records in other tables referring that value

Example: update the StudentID in table Students.

ON UPDATE CASCADE

STUDENTS
StudentID Surname
25/11/1991
485745 Neri Anna 23/04/1992
200768 Verdi Fabio 12/02/1992
587614 Rossi Luca 10/10/1991
937653 Bruni Mario 01/12/1991
EXAMS
Student Mark Laud Course
888888 28 0 01
888888 27 0 04
937653 25 0 01
200768 30 1 04

ON DELETE CASCADE

students
StudentID Surname Name DoB
276545 Rossi Maria 25/141/1991
485745 Neri Anna 23/04/1992
200768 Verdi Fabio 12/02/1992
587614 Rossi Luca 10/10/1991
937653 Bruni Mario 01/12/1991
EXAMS
Student Mark Laud Course
—+—276545 28 0 01
——276545 27 0 04
937653 25 0 01
200768 30 1 04

INSERT

e DML Instruction
— INSERT

* Syntax

— INSERT INTO <table> (<attributes>) VALUES
(<values>) ;

* Semantics
— Insert a tuple into a table

Examples of INSERT

INSERT INTO Teachers (code, surname, name, role, department)
VALUES (‘FT’, ‘Pedreschi’, '‘Dino’, ‘full professor’, ‘Computer
Science’);

INSERT INTO Students (StudentID, surname, name, Program, year,
supervisor) VALUES (111, ‘Rossi’, ‘Mario’, ‘bachelor’, 3,
NULL) ;

INSERT INTO Students (StudentID, surname, name, Program, year)
VALUES (111, ‘Rossi’, ‘Mario’, ‘bachelor’, 3);

INSERT INTO Students (StudentID, surname, name, Program, year)
VALUES (111, ‘Rossi’, Mario’, ‘bachelor’, 3);

INSERT INTO Courses (code, title, Program, teacher) VALUES
(‘PR1’, ‘Programmazionel’, ‘bachelor’, ‘FT');

Queries

e DML Instruction
— SELECT

— One or more sub-queries correlated by operators on SETS

* Sub-query
— Selection of some records
— Projection (with aggregate functions)
— Duplicates eliminations (DISTINCT)
— Rename attributes
— Order of the final results (ORDER BY)

Quering a DB

e Core of the SELECT Instruction

— SELECT: projection, rename, distinct
— FROM: cartesian product or join, alias
— [WHERE]: selection

 Other components
— [ORDER BY]

Quering a DB

SELECT attribute list
FROM tables 1list
[WHERE conditions]

— Select from the tables listend in FROM only the rows
satisfying the conditions espressed in WHERE and extract
only the gli attributes listed in SELECT

Logic
A B [aANDB

True True True
True False False
False True False
False False False
A B |AORB
True True True
True False True
False True True
False False False
A |NOTA
True False

False True

SQL- NULL Values

SQL uses a logic with three values for evaluating
the truth value of a condition

True (T), False (F), Unknown (NULL)

A simple predicate evaluated on an attribute with
value NULL is evaluated as NULL

A tuple with truth value NULL is not returned by
the query

If a predicate of a constraint has NULL value the
constraint is not violated

Logic with three values

A NOT
True False
False True
NULL NULL

A B AANDB
True | True True
True |False False
True |NULL | NULL
False |True False
False | False False
False |NULL | False
NULL | True NULL
NULL | False False
NULL 'NULL | NULL

A B AORB
True | True True
True |False |True
True |NULL | True
False |True True
False |False | False
False |NULL |NULL
NULL | True True
NULL |False |NULL
NULL |NULL | NULL

Table Students

StudentiD Surname Name Program Year Supervisor
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 2 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 CV

Example Query

— List of name and surname of students of the
bachelor degree

SELECT S.Surname, S.Name

FROM Students S
WHERE S.Program=‘bachelor’

Rossi

Maria

Neri

Anna

Verdi

Fabio

FROM

e Lists the table or set of tables on which
performing the query

Simple case: only one table
— FROM Students
Oor
— FROM Students S

Projection: SELECT

e Extract some columns from the table (Projection)
 SELECT [DISTINCT] <attributes> | *

— <attributes>
e List of names of attributes
e Use AS for renaming

Re-naming

Example
SELECT * (WITHOUT PROJECTION) k//////////
OR
SELECT S.Surname, S. name (PROJECTION)

Projection: SELECT

* Schema of the result
— attributes of the original schema

* Instance of the result
— Restriction of tuples to the specified attributes

e Attention

— If the results does not contain keys the it may contain
duplicates

Example of Projection

e List the surname degli students

SELECT Surname
FROM Students

StudentID Surname Program Supervisor
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 2 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 Ccv

| surname |
Rossi
Neri

Verdi

Rossi

Bruni

Selection: WHERE

* Selection of the tuples satisfying a specific conditions

* WHERE <condition>

e <condition>
— Condition of selection, Boolean connectors

Example
WHERE Surname=‘Rossi’ AND Year>1

Example of Selection

SELECT *
FROM Students
WHERE Surname=‘Rossi’

Extract information about students with surname Rossi

StudentID Surname Name Program Year Supervisor
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 2 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 Ccv

StudentID Surname Name Program Year Supervisor
587614 Rossi Luca master 2 FT
276545 Rossi Maria bachelor 1 null

Example of Selection

e Extract surname of students with surname Rossi and Year > 1

SELECT *

FROM Students
WHERE Surname=‘Rossi’ AND Year>1

StudentID Surname Name Program Year Supervisor
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 2 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 Cv

StudentID Surname Name Program Year Supervisor

587614 Rossi Luca master 2 FT

Complex Condition

e Extract information about students of the bachelor degree at
the first or third year

SELECT *
FROM Students
WHERE Program = ‘bachelor’ AND (Year = 1 OR Year = 3)

StudentID Surname Name Program Year Supervisor
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 2 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 Ccv

StudentID Surname Name Program Year Supervisor
276545 Rossi Maria bachelor 1 null

200768 Verdi Fabio bachelor 3 FT

Condition“LIKE”

List people having a name starting with ‘M’ and containing ‘r' as
third character

SELECT *
FROM Students
WHERE name LIKE ‘M r%’

StudentID Surname Name Program Year Supervisor
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 2 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 Ccv
StudentID Surname Name Program Year Supervisor

276545 Rossi Maria bachelor 1 null

937653 Bruni Mario master 1 cv

Manage NULL Values

— Students without a Supervisor

SELECT *
FROM Students
WHERE Supervisor 1s NULL

StudentID Surname Program Supervisor
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 2 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 Cv

StudentID Surname Name Program Year Supervisor
276545 Rossi Maria bachelor 1 null

485745 Neri Anna bachelor 2 null

DISTINCT

* The result may contain duplicates
 Example

— List the “Program” in the table students

SELECT Program bachelor

FROM Students bachelor
bachelor
master
master

SELECT DISTINCT Program

bachel
FROM Students acheror

master

ORDER BY

* Sort tuples i1n the result

* ORDER BY <attributes>

— <attributes>
e List of attributes
» <attribute> {ASC | DESC}

Example
ORDER BY Surname ASC, Name DESC

ORDER BY Surname DESC, Name DESC
ORDER BY Surname, Name (default ASC)

* Semantics
— Sorting tuples

SELECT *

FROM Students

WHERE S.Surname=‘Rossi’

Example: ORDER BY

Extract information about students with surname Rossi

ORDER BY Surname, Name DESC

StudentID Surname Name Program Year Supervisor
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 2 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 Ccv

StudentIiD Surname Name Program Year Supervisor
276545 Rossi Maria bachelor 1 null
587614 Rossi Luca master 2 FT

FROM with JOIN

In the relational data model data are split in different
tables

During the queries we need to correlate data from
different tables

It is possible to compute the cartesian product

To express JOIN operation on the result of cartesian
product, we apply the conditions in WHERE
indicating the link between tables

STUDENTS

Example of JOIN

StudentiD Surname \ET [Program Year Supervis TEACHERS
or
276545 Rossi Maria bachelor 1 null Code surname Name Role Department
485745 Neri Anna bachelor 2 null FT Monreale Anna Reseacher Computer
Science
200768 Verdi Fabio bachelor 3 FT - — - -
cv Tesconi Maurizio Reseacher Engineering
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 cv
StudentID Surname Name Program Supervisor Surname Departmentd
276545 Rossi Maria | bachelor null FT Monreale Anna Engineering Computer
Science
276545 Rossi Maria | bachelor null cv Tesconi Maurizio Reseacher Engineering
485745 Neri Anna bachelor null FT Monreale Anna Reseacher Computer
Science
485745 Neri Anna bachelor null cv Tesconi Maurizio Reseacher Engineering
200768 Verdi Fabio | bachelor FT FT Monreale Anna Reseacher Computer
Science
200768 Verdi Fabio bachelor FT cv Tesconi Maurizio Reseacher Engineering
587614 Rossi Luca master FT FT Monreale Anna Reseacher Computer
Science
587614 Rossi Luca master FT cv Tesconi Maurizio Reseacher Engineering
937653 Bruni Mario master cv FT Monreale Anna Reseacher Computer
Science
937653 Bruni Mario master cv cv Tesconi Maurizio Reseacher Engineering

STUDENTS

Example of JOIN

StudentiD Surname Name Program Year Supervis TEACHERS
or
276545 Rossi Maria bachelor 1 null Code Surname Name Role Department
485745 Neri Anna bachelor 2 null FT Monreale Anna Reseacher Computer
200768 Verdi Fabio bachelor 3 FT Science
587614 ROSSi Luca master 2 FT cv Tesconi Maurizio Reseacher Engineering
937653 Bruni Mario master 1 cv
StudentID Surname Program Supervisor Surname Department
276545 Rossi Maria bachelor 1 null FT Monreale Anna Reseacher Computer
Science
276545 Rossi Maria bachelor 1 null cv Tesconi Maurizio Reseacher Engineering
485745 Neri Anna bachelor 2 null FT Monreale Anna Reseacher Computer
Science
485745 Neri Anna bachelor 2 null cv Tesconi Maurizio Reseacher Engineering
200768 Verdi Fabio bachelor 3 FT FT Monreale Anna Reseacher Computer
Science
200768 Verdi Fabio bachelor 3 FT cv Tesconi Maurizio Reseacher Engineering
587614 Rossi Luca master 2 FT FT Monreale Anna Reseacher Computer
Science
587614 Rossi Luca master 2 FT cv Tesconi Maurizio Reseacher Engineering
937653 Bruni Mario master 1 cv FT Monreale Anna Reseacher Computer
Science
937653 Bruni Mario master 1 cv cv Tesconi Maurizio Reseacher Engineering

STUDENTS

Example of JOIN

StudentID Surname Program Year Supervis
or
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 2 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 cv

StudentID

Surname

Name

Program

Supervisor

TEACHERS

Code Surname Name Role Department
FT Monreale Anna Reseacher Computer
Science
cv Tesconi Maurizio Reseacher Engineering

Surname

Department

200768 Verdi Fabio bachelor 3 FT FT Monreale Anna Reseacher Computer
Science

587614 Rossi Luca master 2 FT FT Monreale Anna Reseacher Computer
Science

937653 Bruni Mario master 1 cv cv Tesconi Maurizio Reseacher Engineering

FROM

* Strategy a
FROM R, S
WHERE S.A=R.B

e Strategy b
FROM S JOIN R ON S.A=R.B

Example: JOIN

* List students with a mark greater than 26 in
the exam for databases

SELECT S.StudentID, S.surname, S.name

FROM Students S JOIN Exams E ON
S.StudentID=E.student JOIN Courses C ON C.code =
F.course

WHERE E.mark > 26 AND C.title = ‘databases’

Set Operators

Binary Operators

Union:RUS
Intersection:RNS
EXCEPT/MINUS: R-S

Set Operators

Tables R and S must have the same number of
attributes
Positional Association

— The list of attributes in the SELECT must have the same
type
Result Schema
— Attribute names of the first table
Attention

— Elimination of duplicates
— Otherwise use: UNION ALL, INTERSECT ALL, EXCEPT ALL

Union

Graduated Specialist
7274 Rossi 42 9297 Neri 33
7432 Neri 54 7432 Neri 54
9824 Verdi 45 9824 Verdi 45

Graduated U specialist

SELECT *
‘StudentlD Name Age i graduated
7274 Rossi 42
7432 Neri 54

9824 Verdi 45 SELECT =
] FROM Specilalist
9297 Neri 33

UNION

Union

Graduated
7274 Rossi 42
7432 Neri 54
9824 Verdi 45

Graduated U specialist

7274 Rossi 42
7432 Neri 54
9824 Verdi 45
9297 Neri 33

Specialist
9297 Neri 33
7432 Neri 54
9824 Verdi 45

SELECT StudentID, Name, Surname
FROM Graduated

UNION

SELECT StudentID, Surname,Name
FROM Specialist

Intersection

Graduated Specialist

7274 Rossi 42 9297 Neri

SELECT *

o FROM Graduated
Graduated M Specialist

INTERSECT

SELECT *
FROM Specialist

Intersection

Graduated Specialist
7274 Rossi 42 9297 Neri trenta
7432 Neri 54 7432 Neri venti
0824 Verdi 45 0824 Verdi guaranta
SELECT * SELECT StudentID, name
FROM Graduated FROM Graduated
INTERSECT INTERSECT
SELECT * SELECT StudentID, name

FROM Specialist FROM Specilalist

Intersection: IN

Graduated Specialist
7274 Rossi 42 9297 Neri

SELECT *
FROM Graduated

Graduated M Specialist WHERE StudentID IN (

SELECT StudentID
FROM Specialist
)

Difference

Graduated Specialist
7274 Rossi 42 9297 Neri 33
7432 Neri 54 7432 Neri 54
9824 Verdi 45 9824 Verdi 45
Graduated— Specialist SELECT *
StudentlD Name Age o
7274 Rossi 42 EXCEPT
SELECT *

FROM Specilalist

Difference: NOT IN

Graduated Specialist
7274 Rossi 42 9297 Neri 33
7432 Neri 54 7432 Neri 54
9824 Verdi 45 9824 Verdi 45
Graduated— Specialist SELECT *
StudentlD Name Age . CTOt
WHERE StudentID NOT IN (
7274 Rossi 42

SELECT StudentID
FROM Specialist

Delete ROWS

e DML Instruction
— DELETE

* Syntax
— DELETE FROM <table> [<WHERE>];
— <WHERE>: the same WHERE asina Query

e Semantics

— Delete from the table all tuples satisfying the condition in
WHERE

Examples: DELETE

DELETE FROM Students
WHERE StudentID=111;

DELETE FROM Students
WHERE Program=‘bachelor’ AND Supervisor=‘FT';

UPDATE

e DML Instruction
— UPDATE

* Syntax
— UPDATE <table> SET <attribute>=<espressione>
[<WHERE>]

e Semantics

— Update the calue of an attribute in all tuples satisfying the
condition in WHERE

Examples: UPDATE

UPDATE Students SET Year=Year+l1;

UPDATE Students SET StudentID=11111
WHERE StudentID=111;

UPDATE Courses SET Teacher='WC’
WHERE Program=‘bachelor’” AND Teacher=‘FT';

GROUP BY

Anna Monreale

Quering a DB

e Core of the SELECT Instruction

— SELECT: projection, rename, distinct
— FROM: cartesian product or join, alias
— [WHERE]: selection

 Other components
— [ORDER BY]
— [GROUP BY]
— [HAVING]

Aggregate Queries

* Average mark and total number of exams

SELECT AVG (mark), COUNT (*)
FROM Exams

* Average mark and total number of exams of
student with StudentID = 1000

SELECT AVG (mark), COUNT (*)

FROM Exams
WHERE student = 1000

Aggregate Function

e Expressions computing functions starting from a set of
tuples

— Count the number of tuples: COUNT

— Minimum value of an attribute: MIN (attribute)
— Maximum value of an attribute : MAX (attribute)
— Avarage value of an attribute: AVG (attribute)

— Sum of values of an attribute: SUM (attribute)

* Syntax:
— Function([DISTINCT] *)
— Function([DISTINCT] Attribute)

What about returning avarage mark and
number of exams student by student?

SELECT student, AVG (mark), COUNT (*)
FROM Exams

ILLEGAL!
Which student?

What we need ...

EXAMS
Student \YETY Laud Course
276545 28 0 01
276545 27 0 04
937653 25 0 01
200768 30 1 04
587614 28 0 03

1.
2.

Create different groups
For each group compute
the function

GROUP BY

* GROUP BY
— Grouping operator

* Syntax
— GROUP BY <Attribute List>

e Semantics
— Create groups of tuples

— Each group has the same value for the grouping
attributes

Example GROUP BY

* Grouping students by per Program

SELECT Program
FROM Students
GROUP BY Program

StudentID Surname Program Supervisor
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 1 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 CV

Example GROUP BY

 Grouping Students per Program and Year

SELECT Program, Year, count (*)
FROM Students
GROUP BY Program, Year

StudentID Surname Program Supervisor
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 1 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 CV

Example GROUP BY

 Grouping Students per StudentID

SELECT StudentID
FROM Students
GROUP BY StudentID

StudentID Surname Program Supervisor
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 1 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 CV

.... SO OUr query is

EXAMS
Student Mark Laud Course 1. Create different groups
276545 28 0 01 2. Foreach group compute
the function

276545 27 0 04

937653 25 0 01 Student AVG_mark NExams

200768 30 1 04 276545 27.5 2

587614 28 0 03 200768 30 1
587614 28 1
937653 25 1

SELECT Student, AVG(Mark) AS AVG Mark, COUNT (*)AS NExams
FROM Exams
GROUP BY Student

Queries with GROUP BY

Grouping Attributes
— GROUP BY

Projection of grouping attributes
— SELECT

Aggregate Functions applied to the group
— SELECT

Conditions on the groups involving aggregate functions
— HAVING

Example

* Average mark per course

SELECT Course, AVG(Mark) AS AVG MARK Course AVG_Mark

FROM Exams 01 26.5
GROUP BY Course

04 28.5
EXAMS 03 28
Student Mark
276545 28 0 01
276545 27 0 04
937653 25 0 01
200768 30 1 04
587614 28 0 03

Example COUNT

* Numero di Students per Program

Program Count(*)
SELECT Program, COUNT (*)

FROM Students bachelor 3
GROUP BY Program; master 2

SELECT Program, COUNT (*) AS NumStudents

FROM Students
Program NumStudents
GROUP BY Program;

bachelor 3

master 2

Sematics:

* Evaluation of FROM

e Creation of groups with GROUP BY

e Evaluation of SELECT for each group
* Each group contributes with ONLY ONE tuple in the result

GROUP BY & Constraints in SELECT

* |f there is GROUP BY, only grouping attributes may
appear in SELECT

SELECT Program, COUNT (*) CORRECT!
FROM Students
GROUP BY Program;

SELECT COUNT (*) CORRECT'!
FROM Students
GROUP BY Program;

SELECT Year, COUNT (*)
FROM Students WRONG!!
GROUP BY Program;

Example COUNT

* Distribution per Year of bachelor students

SELECT Year, COUNT (*) AS NumStud
FROM Students

WHERE Program=‘bachelor’ Year NumStud

GROUP BY Year; 1 2

3 1

StudentID Surname Program Supervisor
276545 Rossi Maria bachelor 1 null
485745 Neri Anna bachelor 1 null
200768 Verdi Fabio bachelor 3 FT
587614 Rossi Luca master 2 FT
937653 Bruni Mario master 1 CcVv

HAVING

* Expresses conditions on groups
 Itis not possible to use WHERE

* Example:

* Avearge Mark for each course with at least 2 exams

EXAMS

Student
276545

Mark
28

Laud

0

Course

01

276545

27

04

937653

25

01

200768

30

04

587614

28

ol | O| O

03

SELECT Course, AVG(Mark) AS AVG Mark

FROM Exams
GROUP BY Course
HAVING COUNT (mark)>1

Course AVG_Mark
01 26.5
04 28.5

QUERY

SELECT [DISTINCT] <result>

FROM <joln or cartesian product>
[WHERE <condition on tuples>]
GROUP BY <groupiling attributes>

[
[HAVING <conditions on groups>]
[ORDER BY <ordering attributes>]

CREATE TABLE Teachers (

) ;

code char (4) PRIMARY KEY,
surnamevarchar (20) NOT NULL,
name varchar (20) NOT NULL,
role char(15),

department char (10)

CREATE TABLE Students (

) ;

studentID integer PRIMARY KEY,
surname varchar (20) NOT NULL,
name varchar (20) NOT NULL,
program char (20),
year integer,
supervisor char(4)

REFERENCES Teachers (code)

CREATE TABLE Courses (

code char (3) PRIMARY KEY,
title varchar (20) NOT NULL,
program char (20),
teacher char (4)

REFERENCES Teachers (code)

CREATE TABLE Tutoring (

student integer
REFERENCES

Students (studentID),

tutor integer
REFERENCES

Students (studentID),

) ;

PRIMARY KEY (student, tutor)

CREATE TABLE Exams (

) ;

student integer

REFERENCES Students (studentID)

ON DELETE cascade

ON UPDATE cascade,
course char (3)

REFERENCES Courses (code),
mark integer,
laud bool,
CHECK (mark>=18 and mark<=30),
CHECK (not laud or mark=30),
PRIMARY KEY (student, corso)

CREATE TABLE Phones (

) ;

teacher char (4)

REFERENCES Teachers (code),
phonenumber char(9),
PRIMARY KEY (teacher,number)

